Regular Paper

DBSJ Journal, Vol.13, No.1
March 2015

Query Partitioning for Mixed
Workloads 1n Multicore
Environments

Fang XI' Takeshi MISHIMA:2
Haruo YOKOTAS3

The current generation of computer hardware has
brought several new challenges for the underlying
software. The number of cores on a chip has grown
exponentially, enabling an ever-increasing number of
processes to execute in parallel. The efficient utilization of
the full range of concurrent processing capabilities offered
by such a multicore platform is critical to achieving good
system performance. As the number of cores on a chip
increases, the increasing processor—-memory gap is the
bottleneck for most data-intensive applications. We
therefore propose a cache-efficient CARIC-DA framework
for arranging the execution of concurrent database
queries on multicore platforms. This achieves improved
database management system (DBMS) performance by
improving cache utilization for concurrent queries. Our
middleware optimizes the performance of the
private-cache levels by providing query-needs-aware
dispatching for concurrent online transaction-processing
queries to run on different processor cores. By considering
both the operating system and the DBMS application, our
proposal achieves higher cache utilization for various
cache levels. In this paper, we demonstrate how the
middleware of CARIC-DA manages a mixed workload,
where complex queries with join operations cannot share
data with other queries in caches. We describe strategies
that enable the middleware to partition complex queries
and dispatch concurrent queries to different processor
cores. The performance of the extended CARIC-DA for the
TPC-W benchmark is evaluated on modern Intel and
AMD multicore platforms.

1. Introduction

Over the years, great attention has been paid to
providing fast and timely data access in database
management systems (DBMSs) [1], [2]. However, the
emergence of multicore platforms is now challenging
DBMSs in several ways. Microprocessor manufacturers
have hit a frequency-scaling “wall”, whereby a single CPU
cannot easily be designed to operate faster. They are
therefore seeking improved performance via an
alternative route: namely, the development of dual-core

! Department of Computer Science, Tokyo Institute of Technology.
xifang@de.cs.titech.ac.jp

? Software Innovation Center, NTT Japan.
mishima.takeshi@lab.ntt.co.jp

? Department of Computer Science, Tokyo Institute of Technology.
yokota@cs.titech.ac.jp

and multicore processors. A modern multicore platform
increases the overall speed for those programs amenable
to parallel computing by integrating multiple processing
cores in a single chip to form chip-level multiprocessors.
Further parallelization can be achieved by putting
multiple multicore CPUs into a single server. Traditional
DBMSs are based on decades-old designs that were
intended to run on uniprocessors. Such systems benefit
directly from improvements in the wunderlying
uniprocessors, where higher processor frequency means
higher throughput. Moreover, these systems achieved
improved performance through I/O optimization. However,
these DBMSs are far from realizing their potential
performance when multicore platforms are used. This is
because the advance in processing ability by multicore
processors has far outpaced improvements in memory
latency, leading to processors wasting much time waiting
for required data items, particularly for data-intensive
applications such as DBMSs. Therefore, the efficient use
of the new hardware resources has become a hot topic for
DBMS researchers.

Existing work evaluating the performance of database
applications on modern multicore platforms indicates that
the processor—memory gap is becoming a bottleneck, with
the CPU wasting much time waiting for desired data to be
loaded from the main memory for a variety of database
applications [3]. With ever more cores integrated into a
single chip, this processor—-memory gap will further slow
down the whole system. Therefore, the processor caches,
which are smaller, faster memory subsystems used to
store copies of data from frequently used main-memory
locations, will play an important role in overcoming this
“memory wall”. By making cache-conscious proposals to
change the data structures and algorithms into
cache-friendly patterns, the cache performance can be
improved for some database queries [4]. However, this
research focuses on the problem only for single-process
execution models. Employing data sharing for concurrent
queries, rather than optimizing each query independently,
remains a challenge for optimizing DBMS execution on
multicore platforms. In fact, on multicore platforms,
database systems are facing a different environment,
where modern multicore processors are providing more
powerful parallel-computing capabilities than traditional
uniprocessors have been able to offer. An increasing
number of concurrent database processes share resources
at different cache levels between the processor cache and
main memory. Any inefficient resource sharing will result
in cache conflicts.

The MCCDB proposal [5] analyzed the problem of data
sharing between different queries in the last-level cache
(LLC), pointing out that LLC data sharing is a
double-edged sword. Some frequently used data could be
evicted from the LLC by a one-time-accessed big-data
structure, resulting in poor data sharing in the LL.C. This
proposal combined the cache-coloring function of the
operating system (OS) with an existing DBMS to avoid
data sharing between different database queries in the
LLC. In another proposal, STEPS [6] optimized the cache
performance for concurrent queries by reducing cache
misses in the instruction caches. STEPS breaks each

Regular Paper

DBSJ Journal, Vol.13, No.1
March 2015

request to be executed into stages and processes a group
of subrequests at each stage, thereby exploiting work
commonality.

However, as ever more cores are being integrated into a
single socket, the microprocessor manufacturers have also
recognized the data-starving problem for modern
multicore platforms and are allocating a much-increased
on-chip cache space to address this performance gap. For
modern multicore processors, in addition to an LLC for
data sharing between all concurrent processes, it is usual
to provide at least two levels of cache for the private use of
each processor core. With caches becoming larger and
more complex, LLC access latency has increased greatly
during recent decades. Therefore, it is increasingly
important to bring data closer to the execution unit and
optimize data sharing at the higher cache levels. On the
other hand, the software of an existing DBMS is usually
very large and complex, and any modification would be a
time-consuming challenge. Therefore, a solution to
improving cache sharing for concurrent database
processes that does not involve changes to existing
software would be highly attractive for DBMSs.

Core affinity with a range index for cache-conscious
data access (CARIC-DA) was the first proposal to address
the cache problem by properly arranging the execution of
concurrent database queries for different processor cores
in DBMSs on multicore platforms [7], [8]. Here, we
analyzed the possibility of improving the cache-hit rate for
data access in the private-cache levels by involving an
effective collaboration between the DBMS and the OS.
CARIC-DA assigns those queries that access the data in
the same data range to run on the same processor core,
while makes sure that queries accessing different data are
executed on different processor cores. Using this
query-aware concurrent-query dispatching, the private
cache of each processor core has to cache only a small
subdataset of the whole database, thereby achieving a
high cache-hit rate. An advantage of CARIC-DA is that it
is implemented as middleware, with the existing DBMS
and OS being used without modification. This makes our
proposal more practical than other approaches to the
effective utilization of multicore environments that would
need to modify the existing DBMS or OS.

Performance evaluation of CARIC-DA using TPC-C [7],
[9], which is a typical online transaction-processing
(OLTP) benchmark, proved the efficiency of our proposal
for optimizing OLTP applications. A typical OLTP
application comprises a large number of concurrent,
short-lived transactions, each accessing a small fraction
(ones or tens of records) of a large dataset. Furthermore,
the smaller cache footprints of these transactions make
the data sharing between sequences of transactions
possible in the private cache levels that are relatively
small. When we come to other applications with mixed
workload, such as those modeled in the TPC-W
benchmark [10], scheduling complex queries with join
operations becomes a new problem. Complex queries that
have join and aggregation operations on large amounts of
data will evict the frequently accessed data for short
queries from the private-cache levels. Therefore, in this
paper, we propose an extended version of CARIC-DA that

can manage mixed workloads. We demonstrate
join-partitioning functions and scheduling for concurrent
queries for mixed workloads with the TPC-W benchmark.
By partitioning the complex queries into several smaller
subqueries, we can achieve better data sharing for all
concurrent queries. However, we also observed that,
because queries with join and aggregation in mixed
workloads are less complex than those in online analytical
processing (OLAP) applications, the join partitioning is
not costless and improper partitioning might well reduce
system performance.

The remainder of this paper is organized as follows.
Section 2 reviews our CARIC-DA proposal and Section 3
describes the join-partitioning extension for CARIC-DA.
Section 4 gives the details of the benchmark and
multicore platform used for the experiments. Section 5
discusses the results of the experiments. Section 6
summarizes the paper.

2. The CARIC-DA System

On a multicore platform, the DBMS has to run
concurrently a number of queries, aiming to utilize the
parallel-computing ability of several processor cores.
These queries are dispatched to the processor cores by the
0OS. The OS has no information about what data the query
is accessing. Furthermore, it has no information about the
whole database of the application. Therefore, the OS may
assign queries that access different datasets to run
together on the same processor core. We have observed
this problem and investigated whether we can provide a
cache-efficient concurrent-query dispatching solution for
DBMSs on multicore platforms by combining information
about the whole database and the data needs of different
queries.

2.1 Framework of CARIC-DA

We observed that different query-dispatching strategies
result in different private-cache utilizations, even though
they may share the LLC. Private caches are the cache
levels dedicated to each processor core, and each
core-related private cache is only shared by processes
allocated to co-run on the specific processor core. We
propose to dispatch concurrent queries according to the
specific data needs of different queries, and co-run the
queries that access the same data on the same processor
core. For example, suppose there are three queries, Q1,
Q2, and Q3. Q1 and Q2 access lines 1-40 of a table, and
Q3 accesses lines 100-150 of the table. Without any
data-needs information about the concurrent queries, the
OS may schedule Q1 and Q3 to co-run on the same
processor core (say, Core 1), while dispatching Q2 to
another core (Core 2). With this dispatching strategy, the
private cache of Core 1 has to cache both lines 1-40 and
lines 100-150. However, if we used data-needs-based
query dispatching, different queries can share data at the
private-cache levels. We would co-run Q1 and Q2 on the
same processor core (Core 1) and dispatch Q3 to another
processor core (Core 2). Q1 and Q2 could then share the
cache data and the cache-hit rate would be improved.
Furthermore, dispatching the queries to different cores
based on the data needs of different queries can ensure

Regular Paper

DBSJ Journal, Vol.13, No.1
March 2015

that a private cache only accesses a specific subset of the
whole database. Therefore, there is a higher probability
that intended data will give cache hits at the
private-cache levels.

CARIC-DA partitions the whole database between
different processor cores, and ensures that those queries
that access data in a specific partition will be executed by
a specific processor core. In a naive database system, the
private cache of each processor core might access data
from anywhere in the whole database. However, in the
proposed system, by restricting the data access by each
core’s private cache to a specific subset of the data in the
whole database, the probability of cache hits is improved.

In the naive database system, the OS manages the
query dispatching between processor cores. Changing the
query-dispatching strategy would wusually involve
changing the functions in the existing OS. However, we
take a more practical approach. We do not dispatch the
database processes to different processor cores directly.
Instead, we bind the database processes to different
processor cores by setting a “core affinity” for each
database process. We then introduce processes that
dispatch queries to be processed by different database
processes according to the predefined database-partition
information. Even though our proposal involves extra
time for performing the query dispatching, our proposal
can be applied easily to existing systems without the
time-consuming and challenging work of modifying the
OS or the DBMS.

------- =y
[Gorel!y | el
—-- s

middleware
DBptouesl \ane-A(nm)
DB process 2 RangE¥(101-200) RI
DB process 3

¥
mr\’é‘ﬁ /
» | '\ ﬁ' N | m i\ DBMS

cess1 100_155as2 DB process 3

i | M | 1
| Cache | Cache | | Cache |

s~ ~
i ~ 4 S b ;]

Figuré 1: The CARIC-DA system deployed on a ml-ilticore
platform

2.2 Architecture of CARIC-DA

The architecture of the CARIC-DA system deployed on
a multicore platform is shown in Figure 1. We extend an
existing DBMS in terms of a middleware level between
the DBMS and the clients. CARIC-DA offers a single
system image to the clients, and the clients do not need to
know about the data-partitioning information in the
database system. For the client, the only change is that of
communicating with the middleware instead of

connecting directly to the database engine. The database
processes also communicate with the middleware,
receiving and executing the queries in their dedicated
query buffers.

In the CARIC-DA system, we partition the whole
database logically into several subdatasets. We map the
different subdatasets to different database processes. The
data structure of the range index (RI) stores the
subdataset and the database-process mapping
information, as shown in Figure 2. In this example, a
specific table is partitioned into three date ranges, and the
three ranges are mapped to three different database
processes.

DB process 1 RangeA (1-100)
RI Proposed
DB process 2 Range B (101-200)
(Range Index) | middleware
DB process 3

DBprocess1 DB process 2 DB process 3

Rdnge_ Rafige FENT
(, A L L/ B 4\ /[/

Figure 2: Logical partitio;ing of the database 1n
CARIC-DA

A principal function of the middleware is to dispatch the
queries to be executed by different database processes
based on the RI and we introduce processes to do this
work (the “CDPs” in Figure 1). These middleware
processes receive queries from the client and parse each
query to obtain information about the query’s intended
data. By referring to the RI, the target database process is
determined primarily according to the query’s intended
data. The query will then be put into the buffer of the
target database process. For example, as shown in Figure
1, a query that accesses a table between lines 100 and 150
will be scheduled for execution by DB process 2.
Meanwhile, any query that accesses data outside this
range will be dispatched to other DB processes. With this
middleware function of intended-data-based query
dispatching, a specified DB process will execute those
queries that access data in the specified subdataset.

We use the function of CPU affinity [11] provided by the
OS to ensure a specified DB process runs only a specified
processor core. With this assignment, queries will be
dispatched to run on different processor cores according to
the data the query will need. The private cache of a
specific processor core will then access only a specified
subdataset of the whole database. The CPU-affinity
function provided by a variety of OSs from Linux to
Windows is used to bind one or more processes to one or
more processor cores. On most systems, Linux included,
the interface for setting the CPU affinity uses a “bitmask”.
A bitmask is a sequence of n bits, where each bit indicates
a logical processor core, and setting a specific bit to 1
means the process can be scheduled to run on the
corresponding processor core. We restrict a database
process to run on a specific core by setting the specific

Regular Paper

DBSJ Journal, Vol.13, No.1
March 2015

core-related bit to 1 and the other bits to 0 in the bitmask.

3. Partitioning the Join Queries

The smaller cache footprints of the OLTP transactions
make the data sharing between sequences of transactions
possible in the private cache levels that are relatively
small. However, complex queries with join and
aggregation operations have to access a large dataset
during their execution. It is difficult for these complex
queries to share data with other queries (simple or
complex) in the private caches. The extensive runtime
data of complex queries are likely to occupy the entire
private cache of the processor core and evict the shareable
data. Therefore, improving the cache performance for
mixed workloads is a big challenge. We propose to
partition each complex join query into several smaller
subqueries, as shown in Figure 3. By reducing the
runtime data size, we may restore data sharing in the
private caches. In the following subsections, we describe
this query partitioning and the dispatching of queries for
a mixed workload in the middleware of CARIC-DA.

3.1 Middleware-based Query Partitioning

In the naive approach, several complex queries may run
concurrently on the different processor cores, with
runtime data structures such as the index used in a
nested loop join being beyond the size of a private cache.
Therefore, it would be difficult to share data between
different join queries, particularly for join operations that
access the same data. Therefore, in the proposed approach,
we run only one join query at a time on the multicore
system. We partition this join query into several
subqueries and then run the various subqueries on
different processor cores concurrently. The smaller
runtime data structures that result, such as the index
data used by each subquery, has a greater probability of
fitting the cache size, and the possibility of data sharing
between different join queries becomes more likely.

Join A, B

Table B Jom Af B

Index of Table A key[values
101" Tom” i Join A(0-100), B
231|"Mike” i Join A(101-200), B

342|"Adam” Join A(201-300), B

[01]3324] 587 Andy”
[201]s324] Ton

Figure 3: Partitioning the join queries

We partition each join query by rewriting the join query
at the middleware level and adding some selection criteria
to a specific table in each subquery. For example, in the
TPC-W benchmark, the “Best Seller” transaction is a
typical complex query with the join operation involving
three tables! “item table”, “author table”, and “order line
table”. We can partition the Best Seller query into several
Sub-BestSeller queries using the key of “item i1d” by
adding the selection criteria for item id over a specific
data range to the Best Seller query, as illustrated in
Figure 4.

Figure 4: Partitioning the Best Seller transaction for the
TPC-W benchmark

The complex queries in the mixed workload, such as
those modeled in the TPC-W benchmark, are different
from the transactions in typical OLAP applications. Even
though there are join operations in both, the queries in
OLAP applications are much more complex and involve
the processing of large amounts of data in fact tables for a
data warehouse. However, the join queries in the TPC-W
are small by comparison and use the index-based
nest-loop join method instead of the hash join. Therefore,
for TPC-W, there is a greater possibility of sharing cached
data between the join queries.

3.2 Query Dispatching for Mixed Workloads

The middleware maintains the query pattern of the
complex queries that are to be partitioned into subqueries
for a specific workload, and partitions complex queries
automatically into several subqueries. To optimize a
specific application with mixed workloads, we should first
target the complex queries for partitioning through an
initial pre-analysis of the whole application. A target
query would be a complex query that involves join
operations requiring long response times in comparison
with other queries. In addition, queries with a high
frequency of occurrence in the whole application should be
targeted, because optimizing a query with a low frequency
of occurrence will have little effect on the overall
performance.

The middleware processes parse each query received
from the clients and partition the target complex queries
into several subqueries. Algorithm 1 describes how the
middleware partitions and dispatches a complex query.
The middleware process rewrites each query into Nsu
subqueries, placing them in different middleware buffers.
The database processes will be bound to different
processor cores and obtain queries from different buffers
in the middleware, as shown in Figure 1. Therefore, the
different subqueries dispatched to different buffers will be
executed on different processor cores by different
database processes. After dispatching the N, subqueries
for execution by the different processor cores, the
middleware process awaits N, answers for the N
subqueries. Finally, the middleware process merges the
Ns» answers as the final answer for the original query and
returns the final answer to the client.

Regular Paper

DBSJ Journal, Vol.13, No.1
March 2015

Algorithm 1: Managing the partitioning of a complex query in
each middleware process

N defines the number of subqueries for each query
Ans defines the answer to the query

Receive a query from the client ;
Parse the query ;
If (the query needs to be partitioned)

For 7in [1, Neul
{
Rewrite the query into subquery_s;
Put the subquery in a specific buffer ;
(the subquery will be executed on a specific core)
}
For 7in [1, New)

{
Get information that the answer to subquery_rsis ready ;
Get the answer to subquery_r1;
}
Merge N answers for the Nas subquery as Ans';
}
else
{
Put the query to a specific buffer ;
Get information that the answer to the query is ready ;
Get the answer to the query as Ans;
}

Return Ans to the client ;

The number of subqueries produced by partitioning a
query has a great impact on performance. It is not a good
solution to partition a single query into as many
subqueries as possible because the execution time of each
subquery does not reduce linearly as the number of
subqueries increases.

The middleware dispatches complex queries and simple
queries to different processor cores. It dispatches simple
queries according to the data needs of the different
queries to different processor cores based on a logical
database partition, as shown in previous work on
CARIC-DA for OLTP applications [7], [8]. For a complex
query, we partition the query into a predefined number of
subqueries and dispatch the subqueries to run
concurrently on different cores. With the
query-dispatching strategy for simple queries having been
analyzed in previous CARIC-DA work [7], [8], we now
present a detailed analysis of a dispatching strategy for
complex queries. The number of cores to allocate to
complex queries should be decided for specific applications
according to the work intensity of its complex queries. We
use the TPC-W benchmark as an example application to
demonstrate the partitioning and dispatching of join
queries for mixed workloads.

TPC-W is a transactional Web e-Commerce benchmark.
The TPC-W database contains eight tables. Two tables
contain information about books on 24 different topics and
the book-related author information. Two tables contain
ordering information and detailed information about each
item in the order, which is the order line table. Other
tables store customer-related information such as
customer addresses and credit-card information. This
benchmark defines a complete Web-based bookstore for
searching, browsing, and ordering books. The most

complex query, which has a very high frequency of
occurrence, collects detailed information about
best-selling books in the most-recent 3333 orders on a
specific topic (the Best Seller transaction) and it has a join
operation over three tables. Therefore, for the TPC-W
benchmark, we would seek to optimize the Best Seller
query.

There are 40 physical processor cores on our Intel
multisocket multicore platform. However, using
hyper-threading, the 40 cores will be seen as 80 virtual
CPUs (vCPUs) by the OS. Hyper-threading [12] has been
available in Intel processors for many years. By enabling
the hyper-threading function on the Intel multicore
processor, each core will be taken to be two vCPUs by the
0OS, each sharing the same private caches. We set up two
different query-dispatching strategies on the Intel
platform to evaluate both the hyper-threading effects and
the subquery numbers for each join query. We allocated
20 vCPUs to processing the Best Seller transaction, using
two dispatching strategies and separately partitioning
each join query into 10 subqueries, as shown in Figure 5,
and five subqueries from Sub-BestSellerl to
Sub-BestSeller5, as shown in Figure 6.

Multicore Platform

Run Other queries Run est Seller queries

Sub.- BeslSelleHSub BeerellerQ Sub- Boere[leH

Sub BesiSeller'I Sub- B!:IS-allerQ Sulb-| BestSeIler'Ib

Flgure 5: Query dispatching in CARIC-DA-1

Twa Concurrant
BestSeller querias

Multicore Platform

Run Other queries Run Besl Seller queries

Four Concurrent

Sub-BestSeller] Sub-BestSeller3|Sub-BestSeller Sub-BeslSallol?j
= BestSeller queries

L L} L 1 -
‘Sub-BestSeller1 Sub-BestSeller|Sub-BestSeller1 Sub- Be:.fSeIIerS'

Figure 6: Query dispatching in CARIC DA-2

For the CARIC-DA-1 strategy, we partitioned each Best
Seller query into 10 subqueries and dispatched the 10
subqueries from Sub-BestSellerl to Sub-BestSeller10 to
the 10 vCPUs from vCPUO to vCPUY, as shown in Figure
5. Note that vCPUO to vCPU9 are associated with five
physical processor cores. Therefore, on the 20 vCPUs
dedicated to processing the Best Seller transaction, we
can concurrently run two Best Seller queries (20

Regular Paper

DBSJ Journal, Vol.13, No.1
March 2015

Sub-BestSeller tasks) in CARIC-DA-1.

For the CARIC-DA-2 strategy, we partitioned each Best
Seller query into five subqueries from Sub-BestSellerl to
Sub-BestSeller5 and dispatched the five subqueries to five
vCPUs, as shown in Figure 6. Therefore, there are four
Best Seller queries running concurrently in CARIC-DA-2.
However, the 10 vCPUs from vCPUO to vCPU9 are
associated with five physical processor cores. That is,
vCPUO and vCPUS5 belong to the same physical processor
core. Therefore, the two Sub-BestSellerl tasks dedicated
to vCPUO and the vCPUS5 from two different Best Seller
queries share the same private caches for the same
physical processor core. That is, there is private-cache
sharing between two different Best Seller queries in
CARIC-DA-2.

Because there is no hyper-threading on the 48-core
AMD platform, we only considered the subquery numbers
for each join query. For the CARIC-DA-1 system, we
partitioned each Best Seller query into six subqueries. For
the CARIC-DA-2 system, we partitioned each join query
into three subqueries.

4. Experimental Setup

The functions of CARIC-DA are implemented in the C
language as middleware between PostgreSQL [13] and
the Linux 0OS. We compare the
CARIC-DA-PostgreSQL-based DBMS against a
PostgreSQL baseline system to evaluate the efficiency of
our proposed framework. In this section, we will introduce
the multicore platforms and TPC-W benchmark used in
our experiments.

The hardware of the database servers is shown in Table
1. There are 80 hardware threads on the Intel platform,
and 48 hardware threads on the AMD platform. The client
environment comprises four machines, with each machine
containing an Intel Xeon E5620 CPU and 24 GB memory.

We used the TPC-W benchmark in the experiments and
evaluated the workload mixes for the “Browsing mix” (5%
updates, 95% selects). These are typical OLTP
transactions about ordering new books and simple
analytical transactions to collect detailed information
about best-selling books on a specific topic (the Best Seller
transaction). We used a dataset with 1,000,000 items and
2,880,000 customers. To reduce I/0 contention and avoid
I/0-subsystem Dbottlenecks, we set the wvalue for
shared_buffers to 20 GB for PostgreSQL. This setting
ensured that all database tables in our experiments could
fit in main memory, enabling I/O contention to be
eliminated as a performance issue.

Table 1: Database Server Parameters

Processor Intel Xeon AMD Opteron
E7-4860 [14] 6174 [15]

Sockets 4 4
Cores/Socket 10 12
Frequency 2.26 GHZ 2.2 GHZ
HW Contexts 80 48
LI1D (per core) 32 KB 64 KB
L1 I (per core) 32 KB 64 KB
L2 (per core) 256 KB 512 KB
L3/LLC (shared) 24 MB 12 MB
Memory 32 GB 32 GB

5. Performance Evaluation

We compared the performance of the proposed
CARIC-DA-1 and CARIC-DA-2 strategies with the
PostgreSQL system that served as the baseline system.
The throughput as a function of the number of concurrent
clients is shown in Figures 7 and 8. We observed that the
CARIC-DA systems performed better than the baseline
system, On the Intel platform, we improved the
throughput by 12%, whereas the AMD platform achieved
a 6% improvement.

—4—Baseline
——CARIC-DA-1
~#—CARIC-DA-2
500
450 —y
400 | e A,

350
300
250 -
200
150 |
100
50
0 7 T T T T T T T
0 20 40 60 80 100 120 140
Concurrent Clients

Throughput

Figure 7: Throughput of different systems on the Intel
multicore platform

For the Intel platform, the CARIC-DA-1 system
performs a little worse than the baseline system when
there are less than 80 concurrent clients. This is because
partitioning each query into 10 subqueries involves
excessive overhead. The database engine has to parse and
create a proper query plan for 10 subqueries, whereas, for
the baseline system, each join query is analyzed only once
by the database engine. For small queries, the time used
by the query parser and in creating the query plan cannot
be ignored when compared with the query execution time
in the database engine.

—+—Baseline
—m—CARIC-DA-1

~#—CARIC-DA-2
600 -

Throughput

0 20 40 &0 B0 100 120 140

Concurrent Clients

Figure 8: Throughput of different systems on the AMD
multicore platform

In the baseline system, there is a dramatic performance
decrease when setting up additional concurrent clients.
However, we are setting up a fixed number of concurrent
database processes equal to the number of the hardware
threads supported by the specific multicore platform.

Regular Paper

DBSJ Journal, Vol.13, No.1
March 2015

Therefore, the CARIC-DA system can avoid the
performance decrease caused by too many concurrent
database processes. However, we did observe a
nonscalability problem for all the CARIC-DA systems and
for the baseline system. We speculate that some
components of the database engines are becoming
bottlenecks and we would therefore seek to identify and
resolve these bottlenecks in our future work.

6. Conclusion

To optimize concurrent-query execution on modern
multicore platforms for DBMSs, we have proposed a
middleware solution, “CARIC-DA”, for OLTP applications.
By dispatching the concurrent queries to appropriate
processors, our proposal achieved higher performance by
improving the private-cache utilization. However, for
mixed workloads, such as those modeled in the TPC-W
benchmark, it is difficult to provide cache data sharing for
concurrent complex queries with join operations.
Therefore, in this paper, we analyzed how to use the
middleware of an extended CARIC-DA to manage the
partitioning for complex queries and to dispatch the
concurrent queries for mixed workloads on a multicore
platform. We compared the performance of our proposed
system with a pure PostgreSQL system on both Intel and
AMD multicore platforms. Our proposed system achieved
higher throughput on both platforms. However, we
observed nonscalability for a mixed workload on modern
multicore platforms. Therefore, improving system
scalability will be investigated in our future work.

References

[1] J. Cieslewicz and K. A. Ross, “Database optimizations
for modern hardware,” Proceedings of the IEEE, vol. 96,
no. 5, pp. 863—-878, May 2008.

[2] N. Hardavellas, I. Pandis, R. Johnson, N. G. Mancheril,
A. Ailamaki, and B. Falsafi, “Database servers on chip
multiprocessors: Limitations and opportunities,” CIDR,
pp. 79-87, 2007.

[3] A. Ailamaki, D. J. DeWitt, M. D. Hill, and D. A. Wood,
“DBMSs on a modern processor: Where does time go?”
VLDB, pp. 266-277, 1999.

[4] J. Rao and K. A. Ross, “Making B+tree cache conscious
in main memory,” SIDMOD, pp. 475-486, 2000.

[5] R. Lee, X. Ding, F. Chen, Q. Lu, and X. Zhang,
“MCC-DB: Minimizing cache conflicts in multi-core
processors for databases,” VLDB, pp. 373—384, 2009.

[6] S. Harizopoulos and A. Ailamaki, “STEPS towards
cache-resident transaction processing,” VLDB, pp. 660—
671, 2004.

[7] F. Xi, T. Mishima, and H. Yokota, “CARIC-DA: Core
affinity with a range index for cache-conscious data
access in a multicore environment,” DASFAA, pp. 282—
296, 2014.

[8] F. Xi, T Mishima, and H. Yokota, “Optimizing
concurrent query execution on modern multisocket
multicore platform,” FTSIS, pp. 125-130, 2014.

[9]Transaction processing performance council. TPC-C
v5.5: On-line transaction processing (OLTP)
benchmark.
http://www.tpc.org/tpcc/

[10] D. Menasce, “TPC-W: A benchmark for e-commerce,”
Internet Computing, IEEE, vol. 6, no. 3, pp. 83-87,
2002.

[11] R. Love, “Kernel korner: CPU affinity,” Linux Journal,
no. 111, p. 8, July 2003.

[12] L. Gilbert, J. Tseng, R. Newman, S. Igbal, R. Pepper,
0. Celebioglu, J. Hsieh, and M. Cobban, “Performance
implications of virtualization and hyper-threading on
high energy physics applications in a grid environment,”
in 19th IPDPS, p. 32a, 2005.

[13] PostgreSQL: The world’s most advanced open source
database.
http://www.postgresql.org/.

[14] Intel 64 and IA-32 Architectures Optimization
Reference Manual.
http://www.intel.com/content/dam/doc/manual/64-ia-
32-architectures-optimization-manual.pdf.

[15)] BKDG for AMD family 10h processors.
http://support.amd.com/en-us/search/tech-docs?k=bkdg.

Fang XI

She is currently a Ph.D. student at the Tokyo Institute of

Technology. She is engaged in research on data

engineering and database systems.

Takeshi MISHIMA

He received his D.Eng. degree from Tokyo University in

2010. He has been with the NTT Corporation since 1996.

His research areas include database systems and cloud

computing.

Haruo YOKOTA He is currently a Professor in the

Department of Computer Science at the Tokyo Institute of

Technology. His research interests include the general

research areas of data engineering, information storage

systems, and dependable computing.

