
Regular Paper
DBSJ Journal

Vol. 14, Article No. 2 March 2016

Heading-Aware Proximity
Measure and Its Applica-
tion to Web Search
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Proximity of query keyword occurrences is one im-
portant evidence which is useful for effective query-
biased document scoring. If a query keyword occurs
close to another in a document, it suggests high rel-
evance of the document to the query. The simplest
way to measure proximity between keyword occur-
rences is to use distance between them, i.e., differ-
ence of their positions. However, most web pages con-
tain hierarchical structure composed of nested logical
blocks with their headings, and it affects logical prox-
imity. For example, if a keyword occurs in a block and
another occurs in the heading of the block, we should
not simply measure their proximity by their distance.
This is because a heading describes the topic of the
entire corresponding block, and term occurrences in
a heading are strongly connected with any term oc-
currences in its associated block with less regard for
the distance between them. Based on these observa-
tions, we developed a heading-aware proximity mea-
sure and applied it to three existing proximity-aware
document scoring methods: MinDist, P6, and Span.
We evaluated these existing methods and our modi-
fied methods on the data sets from TREC web tracks.
The results indicate that our heading-aware proxim-
ity measure is better than the simple distance in all
cases, and the method combining it with the Span
method achieved the best performance.

1 Introduction
Proximity of query keywords is an important factor for ef-

fective query-biased document scoring. It has been widely
studied in the context of general document search, and
many proximity-aware scoring functions have been proposed
[9, 19, 20]. Most of them use distance, i.e., the difference
of their positions, to measure proximity between two key-
word occurrences. Less distant occurrences of query key-
words in a document suggest more relevance of the document
to the query. The distance, and also existing distance-based
proximity-aware scoring functions, treat a document as an
array of term occurrences. However, most documents have
logical structure, and it affects logical proximity between
term occurrences. Therefore, we should not measure logical
proximity in structured documents by the simple distance.

Hierarchical heading structure is the most prevalent type
of logical structure in documents [11]. It consists of nested
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blocks with their headings. A heading is a brief topic descrip-
tion of a logical segment of a document, and a block is such
a segment associated with a heading. Figure 1 shows an ex-
ample document with hierarchical heading structure. In this
figure, each block (including the entire document) is enclosed
by a rectangle and headings are emphasized in italic font.

Hierarchical heading structure strongly affects proximity.
Suppose we have documents A, B, and C. In all of them, a
query keyword X occurs n-term-occurrences-distant from an
occurrence of another query keyword Y. In A, X occurs in a
block and Y occurs in the heading of the block. In B, X and Y
occur in the non-heading part of one block. In C, X and Y oc-
cur in two separate blocks that have no ancestor-descendant
relationship. Among these documents, document A must be
the most relevant to the query. This is because a heading de-
scribes the topic of the entire corresponding block, and term
occurrences in a heading are strongly connected with any
term occurrences in its associated block with less regard for
the distance between them. Document C must be the least
relevant to the query because the keywords occur in two sep-
arate blocks that may refer to two different topics.

In this paper, we propose a heading-aware proximity mea-
sure for scoring documents with heading structure. We mea-
sure proximity by using linear functions of distance that have
different coefficients for each structural relationship between
term occurrences. Our measure can be combined with vari-
ous existing proximity-aware document scoring functions.

In this paper, we combine our measure with three existing
proximity-aware scoring functions, and evaluated these com-
bined methods on the data sets from the Text Retrieval Con-
ference (TREC) web tracks. We compared the official base-
line rankings, rankings generated by the existing proximity-
aware scoring functions that use the simple distance, and
rankings generated by the proximity-aware scoring functions
that use our heading-aware proximity measure. The results
indicate that our heading-aware proximity measure is better
than the simple distance in all cases, and the method combin-
ing it with the Span method achieved the best performance.

2 Related Work
One way to score documents taking account of proximity

between query keyword occurrences is to count frequency of
n-grams (1 < n) that contain multiple query keywords as well
as frequency of single query keyword [1, 15]. However, this
method cannot deal with proximity between distant occur-
rences because it requires huge index size for large n.

Tao and Zhai [20] proposed five proximity-aware document
scoring functions. They concluded that the MinDist function,
which takes into account only the closest occurrence pair of
two keywords, is the most effective for document ranking.
Cummins and O’Riordan [9] proposed 10 basic proximity-
based functions and produced three new functions by com-
bining these 10 functions and two more basic functions by us-
ing genetic programming. Song et al. [19] proposed a method
of segmenting a document into spans, and a proximity-aware
document scoring function based on numbers of keyword oc-
currences and all term occurrences in the spans.

To the best of our knowledge, however, no study has pro-
posed proximity measures or scoring functions that consider
the properties of heading structure explained in Section 1.

Passage retrieval is another approach to improve docu-

1



Regular Paper
DBSJ Journal

Vol. 14, Article No. 2 March 2016

Heading-aware0proximity1measure2

Research3 purpose4

To5 improve6 document7 ranking.8

Background9

Structured10 documents11

Most12documents13have14logical15structure.16

Effect17 of18 structure19

Logical20structure21affects22logical23proximity.24

This25 document26 is27 not28 finished29 yet.30

Figure 1: Example document with heading structure. Each
rectangle encloses block, each text in italic font is heading,
and each superscript number is position of term occurrence.

ment retrieval and is similar to, but not exactly the same
as, proximity search [13]. Passage retrieval systems first
segment documents into multiple regions, score the regions,
then score the documents based on the region-based scores.
The first problem in effective passage retrieval is how to ex-
tract regional structure of documents reflecting their topic
structure [3]. There are many region extraction methods and
some have already been applied to passage retrieval [18].

The Vision-based Page Segmentation method (VIPS) [2] is
one of the most well-known methods of extracting regional
structure in web pages. It detects margins in a page then
segments the page into regions split by the margins. To ex-
tract the hierarchy, VIPS measures the weights of the mar-
gins mainly based on their width then recursively merges the
regions split by the lightest margin. The same authors [3]
and De Moura et al. [10] proposed passage retrieval methods
for web pages based on VIPS. However, their methods do not
use headings. To the best of our knowledge, heading-aware
passage retrieval has also not been studied sufficiently.

As explained above, heading-aware document retrieval
has not been studied sufficiently. An exception is many meth-
ods that take into account headings of entire documents, i.e.,
document titles. For example, BM25F [16], which is a vari-
ant of BM25 [17], is a widely used document scoring function.
The BM25F function was designed to score documents com-
posed of multiple fields, such as document titles, anchor text
of in-links, and body text. However, it does not consider prox-
imity between fields, such as title and body text.

3 Proximity Measures
In this section, we explain the simplest proximity mea-

sure, i.e., distance, and propose our heading-aware proximity
measure, which we call heading-aware semi-distance. Note
that they measure proximity between two term occurrences,
not two terms, while some proximity-based functions shown
later measure proximity between two terms.
3.1 Distance
The simplest measure for proximity between two term occur-
rences is distance between them, that is,

dist(o1, o2) = |pos(o1) − pos(o2)|

where o1 and o2 are term occurrences in a document and
pos(o) denotes the position of o, i.e., a serial number as-
signed to all term occurrences in the document. For exam-

ple, in the document shown in Figure 1, dist(Heading-aware0,
Structured10) = 10 and dist(proximity24, document26) = 2.
3.2 Heading-Aware Semi-distance
As discussed in Section 1, distance cannot represent logical
proximity between two term occurrences o1 and o2 in doc-
uments containing heading structure. To measure proxim-
ity between them, we define a new measure, heading-aware
semi-distance, denoted by hasd, as follows:

hasd(o1, o2) =


dist(o1, o2) · ahc + bhc if hc(o1, o2) = true ;
dist(o1, o2) · adb + bdb if db(o1, o2) = true ;
dist(o1, o2) otherwise.

This measure has four parameters, ahc, bhc, adb, and bdb. The
parameters ahc and adb are weights of simple distance, and bhc

and bdb are penalties given regardless of the simple distance.
Functions hc and db are predicates on structural relationship
between o1 and o2, which are defined below.
Heading-Content relationship: The predicate hc(o1, o2) is
true iff o1 , o2 and either o1 or o2 occurs in the hierarchical
headings of a block in which the other occurs. In other words,
hc(o1, o2) is true iff the two occurrences are in relationship of a
heading word and its corresponding content word. Note that
it includes cases where both occurrences are in a heading and
also cases where one occurrence is in the heading of a block
and the other is in (either the heading or non-heading part of)
its descendant block. For example, in Figure 1, hc(Heading-
aware0, measure2) = true, hc(Heading-aware0, Structured10)
= true, and hc(measure2, Most12) = true. Also note that
hc(o1, o2) is false when either o1 or o2 occurs in the heading
of a block and the other is in the non-heading component of
its ancestor block. For example, in Figure 1, hc(structure19,
document26) = false. According to our assumption, ahc < 1 and
bhc = 0 so that dist(o1, o2) > hasd(o1, o2) when hc(o1, o2) = true.
Occurrences in Different Blocks: On the other hand,
db(o1, o2) is true iff o1 , o2, hc(o1, o2) is false, and o1 and o2

occur in two different blocks. Note that it includes cases
where the two blocks have ancestor-descendant relationship.
In Figure 1, db(Structured10, Effect17) = true, db(proximity24,
document26) = true, db(Heading-aware0, Structured10) =
false, and db(document26, finished29) = false. According to our
assumption, 1 < adb and 0 ≤ bdb, or 1 ≤ adb and 0 < bdb, so that
dist(o1, o2) < hasd(o1, o2) when db(o1, o2) = true.

In this paper, we assume 0 < ahc, 0 ≤ bhc, 0 < adb, and 0 ≤ bdb

so that hasd is a symmetric positive-definite function (or a
semimetric). Note that hasd does not necessarily satisfy the
triangle inequality. For example, in Figure 1, hasd(Most12,
Structured10) + hasd(Structured10, structure16) < hasd(Most12,
structure16) when we set ahc < 0.5 and bhc = 0.

4 Proximity-Aware Scoring Methods
In this section, we explain three existing distance-based

document scoring methods, which use simple distance. For
each of them, we also propose a modified method that uses
our heading-aware semi-distance instead of simple distance.
4.1 MinDist
The MinDist proximity-based function is proposed by Tao
and Zhai [20]. They also proposed four other functions, but
concluded in their paper that MinDist is their best perform-
ing function. In their paper, MinDist is defined for a docu-
ment (or an array of term occurrences) D and a query (or a
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set of keywords) Q. However, for conformity with the next
scoring function P6, we re-define it for D and a pair of differ-
ent query keywords, κ1 and κ2, without changing their scoring
results. The function, denoted by mindist, is defined as below:

mindist(κ1, κ2,D) = min
o1∈O(κ1 ,D),o2∈O(κ2 ,D)

dist(o1, o2)

where O(κ,D) is a set of occurrences of κ in D.
Their proximity-based score π of D for Q is defined by:

π(Q,D) = log
[
α + exp

{
− min
κ1 ,κ2∈Q∩D,κ1,κ2

mindist(κ1, κ2,D)
}]

where α is a free parameter and Q ∩ D denotes a set of key-
words in Q which also occurs in D.

Their final score of D for Q is the sum of the proximity-
based score π and a non-proximity-based score. As the non-
proximity-based score, we use a score given by Indri (ex-
plained later) with scaling. The final score is s · indri(Q,D) +
π(Q,D) where s is a free parameter for scaling and indri(Q,D)
is the Indri score of D for Q. We call a document ranking
method by this score the MinDist method.
4.2 P6
Cummins and O’Riordan developed three proximity func-
tions by combining 12 basic proximity functions (including
MinDist) by using genetic programming [9]. On most data
sets in their evaluation, one of the functions, denoted by
p6, achieved the best mean average precision (MAP) scores
among them. The function p6 is defined as follows:

2 · p6 =
[{

3 · log
(

10
mindist

)
+ log

(
prod + 10

mindist

)
+

10
mindist +

prod
sum·qt

}
/qt
]
+

prod
avgdist·mindist

where qt = |Q ∩ D| and p6, mindist, prod, sum, and avgdist are
all functions of (κ1, κ2,D). The definition of mindist is the one
shown before. The others are:

prod(κ1, κ2,D) = |O(κ1,D)| · |O(κ2,D)| ,
sum(κ1, κ2,D) = |O(κ1,D)| + |O(κ2,D)| , and

avgdist(κ1, κ2,D) =

∑
o1∈O(κ1 ,D),o2∈O(κ2 ,D) dist(o1, o2)

prod(κ1, κ2,D)
.

Their proximity-based score of D for Q is defined by:

S (Q,D) =
∑

κ1 ,κ2∈Q∩D,κ1,κ2

p6(κ1, κ2,D) .

Their final score of D for Q is the sum of the proximity-
based score and a non-proximity-based score. We again use
Indri score with scaling as the non-proximity-based score.
The final score is s · indri(Q,D) + S (Q,D) . We call a document
ranking method by this score the P6 method.
4.3 Expanded Span
Song et al. proposed an efficient method to segment a doc-
ument into expanded spans that never overlap, include as
many unique query keywords as possible, and have minimal
widths [19]. They also proposed a scoring function f of an ex-
panded span for a query keyword, a scoring function rc of a
document for a query keyword, and a BM25-like [17] scoring
function of a document for a query.

In this paper, an expanded span is treated as a substring
of D and denoted by E = [oi, ..., o j]. Note that oi and o j are

occurrences of two different query keywords because of the
width-minimality of expanded span. The width of E is:

width(E) =
 dist(oi, o j) + 1 if 1 < |E| and

M otherwise

where M is a parameter and 0 < M. The score of a span E for
a query keyword κ is:

f (κ, E) =


{ |Q∩E|

width(E)

}x
· |Q ∩ E|y if 0 < |O(κ, E)| and

0 otherwise

where |Q ∩ E| is number of query keywords (not limited to κ)
that occur in E, and x and y are free parameters. The score of
D for κ is rc(κ,D) =

∑
E⊂D f (κ, E) and the score of D for Q is:∑

κ∈Q

(k1 + 1) · rc(κ,D)
k1 · {(1 − b) + b · |D|/avdl} + rc(κ,D)

log
N − n(κ) + 0.5

n(κ) + 0.5

where k1 and b are parameters, avdl is the arithmetic mean of
|D|, N is the number of all documents, and n(κ) is the number
of documents that contain κ. We call a document ranking
method by this score the Span method.
4.4 Heading-Aware Methods
We can easily combine our heading-aware semi-distance with
these three methods MinDist, P6, and Span, by replacing dist
in them by our hasd. We call the heading-aware versions of
these three methods, the heading-aware MinDist method (or
HA-MinDist), the heading-aware P6 method (or HA-P6), and
the heading-aware Span method (or HA-Span).

In HA-Span, a proximity measure for two adjoining query
keyword occurrences is also required for the segmentation of
a document into expanded spans, and we used our hasd also
for this segmentation. See their original paper for the details
of this segmentation [19].

5 Application to Web Search
In this section, we explain some details of our implementa-

tion of the proximity-aware document scoring methods. Note
that our heading-aware semi-distance is independent from
the features of web pages and that it may be applicable to
search for general documents containing heading structure,
e.g., books and news articles.
5.1 Heading Structure Extraction
To apply our heading-aware variants of the existing
proximity-aware scoring methods to web search, we need to
extract hierarchical heading structure in web pages. It is not
a trivial task and we used our previously proposed method
[11]. Its input is an HTML web page with a DOM tree and
the output is DOM node arrays that correspond to headings
and blocks in the page. See the original paper for detailed de-
sign decisions and accuracy of the extraction method itself.
5.2 Text Content Extraction and Tokenization
To apply the scoring methods to a web page, we also need to
extract D, i.e., an array of term occurrences in the page.

For non-heading-aware methods, we extract all DOM text
nodes from each web page, join the contents of the nodes in
document order into a string, then replace adjoining whites-
pace characters in the string by a single space. We ignored
descendant text nodes of STYLE or SCRIPT HTML elements.
When joining text contents, we insert a space between them.
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Finally, we tokenize the string into D by the Treat implemen-
tation1 of the Stanford Penn-Treebank style tokenizer.

For heading-aware methods, we split the string at the bor-
ders of headings and blocks. This is because headings and
blocks are coherent information unit and a term occurrence
must not partially overlap with headings or blocks. After
that, we tokenize the strings. The other processes are same
as those for non-heading-aware methods.

We score D for Q after tokenizing Q by the same implemen-
tation, removing 33 default stop words of Apache Lucene2

from Q, and stemming all occurrences in D and Q by the
Treat implementation of the Porter stemming algorithm [14].

6 Data Sets and Evaluation Measures
For optimization of the parameter values of the methods

and also for evaluation of the methods, we used data sets
prepared for TREC 2013–2014 web tracks [7, 8]. In this sec-
tion, we explain the data sets and evaluation measures.
Queries and intents: The data sets have 50 keyword
queries (topics) for each year3. There are one or more in-
tents (subtopics) behind each query. We split the total 100
queries into training and test sets. Because the queries for
each year are biased (for example, there are only six intents
marked as navigational behind 2014 queries while 38 behind
2013) we split them based on their topic IDs, not years. We
used the even-numbered 50 queries for training and the odd-
numbered 50 for test.
Document collection: They have a huge web collection
ClueWeb12, which is crawled by the Lemur Project4 in 2012.
Because of our resource limitation, we used its subset Clue-
Web12B, which is also a TREC official collection. The collec-
tion contains about 52 million web pages.
Baseline scoring and ranking: The 2014 official base-
line rankings were generated by default scoring of the Indri
search engine (including query expansion based on pseudo-
relevance feedback) and Waterloo spam filter5. Note that
they also include rankings for the 2013 queries. We only used
top-200 documents in the rankings because it requires much
computation resource to score all the documents in the docu-
ment collection or even the entire rankings and because we
have to repeat it many times for parameter optimization.
Relevance judgment data: We used the TREC official
graded relevance judgment data of the documents to the in-
tents3. Note that it includes relevance judgment for entire
ClueWeb12 and this fact affects the values of ideal DCG@20
explained below.
Evaluation measures: We used four TREC official and
well-known evaluation measures, namely ERR-IA@20, α-
nDCG@20, NRBP, and MAP-IA, for evaluating a document
ranking for one or more intents behind a query. We used the
TREC official code, ndeval.c, to calculate scores of these
measures5. The definition of ERR@20 is:

ERR@20 =

20∑
i=1

R(gi)
i

i−1∏
l=1

{1 − R(gl)} ,where

1https://github.com/louismullie/treat
2https://lucene.apache.org/
3http://trec.nist.gov/data/webmain.html
4 http://www.lemurproject.org/
5https://github.com/trec-web/trec-web-2014/

R(gi) =
2gi − 1

16

where gi ∈ {0, 1, 2, 3, 4} is the graded relevance of the ith docu-
ment in the ranking to an intent. The definition of P@i is the
ratio of relevant documents in top-i documents in the rank-
ing. The ith document is considered relevant iff 0 < gi. The
definition of AP is the arithmetic mean of P@i where ith doc-
ument is relevant. The ERR-IA@20 and AP-IA measures are
respectively arithmetic mean of ERR@20 and AP scores for
all intents (with at least one relevant document) behind the
query. The ERR-IA@20 measure is better at measuring ef-
fectiveness for navigational intents [4]. The definition of α-
nDCG@20 [5] is:

α-nDCG@20 =
DCG@20

ideal DCG@20
,where

DCG@20 =

20∑
i=1

G(i)
log2(1 + i)

, and

G(i) =

m∑
j=1

J(i, j)
2C(i, j) .

The number of intents behind the query is denoted by m,
J(i, j) is 1 iff the ith document in the ranking is relevant to
the jth intent behind the query, i.e., 0 < gi about j, and is 0
otherwise, C(i, j) is number of documents ranked higher than
i and relevant to the jth intent. The definition of NRBP is:

NRBP =
m
4

∑
i

G(i)
2i−1 .

The NRBP measure is better at measuring effectiveness for
ambiguous and underspecified queries [6].

To integrate the evaluation scores for multiple queries, we
calculated arithmetic mean of the scores. Especially, we call
arithmetic mean of AP-IA scores MAP-IA.

7 Fine Tuning with Training Data
In this section, we explain the optimization method we

used for parameter values of the methods, explain optimized
parameter values, and discuss meanings of the values.
7.1 Optimization Method
For the optimization, we used the 50 training queries and
adopted the simple Coordinate Ascent algorithm [12], which
optimize only one parameter at a time. This is because opti-
mization method is not the main topic of this paper. To avoid
local maximum, we check three smaller and three larger can-
didate values than the current value. If the best score among
the six candidates is better than the current best score, we
adopt the candidate as a new current value then check new
six candidates around the value. If not, we optimize the next
parameter. Next to the last parameter, we optimize the first
parameter again. If we cannot further improve the score by
changing any of parameters, we quit the optimization.

The target function is set to MAP-IA. This is because the
other measures tend to (almost) ignore lower-ranked docu-
ments even though they are important in the middle of the
greedy optimization process.

Median of initial values are: ahc = 0.30, bhc = 0, adb = 1.00,
bdb = 15, α = 1.00, s = 1.00, M = 45, x = 0.25, y = 0.30, k1 = 0.40,
and b = 0.30. These values are taken from the original papers
of the existing methods or reasonably selected by us. Initial
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Table 1: Optimized parameter values of our hasd.
Method ahc bhc adb bdb

HA-MinDist .450 0 1.50 3
HA-P6 .600 0 1.70 36
HA-Span .800 3 .800 30

Table 2: Optimized values of other parameters.
Method s α M x y k1 b

MinDist [20] 2.83 .420
HA-MinDist 2.83 .297
P6 [9] 256
HA-P6 256
Span [19] 54 .250 1.35 3.20 .250
HA-Span 27 .250 .800 .800 .350

values are randomly selected from these median values, five
smaller values, and five larger values.

When we change α, s, or k1 values in the optimization, we
multiply it by 2−

1
4 or 2

1
4 because they are expected to be larger

than 0 and their optimized values may be dozens of times
higher than the initial value. When changing ahc, adb, x, y, or
b values, we add -0.05 or 0.05 to the value. When changing
bhc, bdb, or M values, we add -3 or 3 to the value.

Considering the meanings of parameters, we defined the
ranges of some parameters and did not check values outside
them. Because hasd must be larger than 0, we let 0.05 < ahc,
0 ≤ bhc, 0.05 < adb, and 0 ≤ bdb. We also let 0 ≤ b ≤ 1.

The values of avdl, N, and n(κ) in (HA-)Span were computed
by using the ClueWeb12B and the older ClueWeb09B collec-
tions for robust estimation. The value of avdl was about 1,650
and the value of N was about 103 million.
7.2 Optimized Parameter Values
Table 1 lists the parameter values of our hasd measure op-
timized for each of our heading-aware method. Optimized
values of the other parameters are listed in Table 2. They
are derived from 64 initial settings for each method.
7.3 Discussion on Parameter Values
First we discuss the parameter values of hasd (see Table 1).
Heading-Content relationship: For both the HA-Mindist
and HA-P6 methods, optimized values of ahc are 0.6 or smaller
and bhc was 0. It means logical distance between a pair of
term occurrences in a heading and in its associated block is
evaluated to be smaller than the simple distance. These re-
sults coincide with our observation explained in Section 1.
However, for the HA-Span method, optimized values of ahc

was 0.8 while bhc was 3. When hc(o1, o2) = true and ahc = 1
and bhc = 0, hasd is equal to dist and 0.8 is close to 1 and 3
is close to 0. Therefore, it means that there is no significant
difference between dist and hasd.
Occurrences in Different Blocks: On the other hand, op-
timized values of adb and bdb were inconsistent over three
methods. For HA-MinDist, optimized adb was 1.5 but bdb was
3. In this setting, term occurrences in separate blocks are
logically more than 1.5 times distant than in the simple dis-
tance. For HA-P6, adb was 1.7 and bdb was 36. In this set-
ting, term occurrences in two separate blocks are logically
far more than 1.7 times distant than in the simple distance.
For HA-Span, adb was 0.8 and bdb was 30. Because the value
of M (maximum hasd between adjoining term occurrences in
the same span), is set to 27, this setting in effect means
that term occurrences in different blocks are logically distant

Table 3: Comparison of average evaluation scores.
Method ERR-IA@20 α-nDCG@20 NRBP MAP-IA

Baseline .310 .364 .285 .016
MinDist [20] .298 .360 .270 .017
HA-MinDist .335 .392 .304 .018
P6 [9] .307 .367 .277 .017
HA-P6 .309 .368 .280 .017
Span [19] .402∗ .440 .383∗ .020
HA-Span .436∗ .470∗ .418∗ .021∗
∗ statistically significantly different from baseline (p < 0.05)

enough so that there is no necessity of considering proximity
between occurrences in different blocks. All these results co-
incide with our observation explained in Section 1.

As discussed above, most obtained parameter values of
hasd follows our assumptions. This fact supports the valid-
ity of our idea and definition of hasd proximity measure.

Next we discuss the other parameter values (see Table 2).
The values of s for P6 and HA-P6 methods were optimized to
256. This fact means the effect of the p6 function was quite
limited and the resulting rankings were almost same as the
baseline. This should be because the p6 function itself is al-
ready optimized by using genetic programming for a certain
data set [9].

The original papers of the MinDist and Span methods
show parameter values already optimized for certain data
sets. The value of α in the mindist function is 0.3 [20] and
the values of M, x, y, k1, and b in the Span method are re-
spectively 45, 0.25, 0.3, 0.4, and 0.3 [19]. However, according
to our preliminary evaluation with test data, our optimized
parameter values consistently achieved better scores than
the parameter values shown in the original papers on all
the evaluation measures. Therefore, hereafter in this paper,
we use our optimized parameter values. This fact also sup-
ports usefulness and robustness of the optimization method
we used.

8 Evaluation with Test Data
Last of all, we explain the evaluation result of web page

rankings by the methods.
8.1 Evaluation Method
We used the 50 test queries for evaluation. As explained be-
fore, we only scored and ranked top-200 documents in the
baseline rankings for the queries (total 10,000 tuples of a
document, a query, and the baseline score of the document
for the query). In other words, we evaluated the methods
by re-ranking. All parameters of the methods are set to the
values listed in Table 1 and 2.
8.2 Evaluation Result
Table 3 lists the evaluation scores of all pairs of a measure
and a method. In this table, each asterisk means statistically
significant difference from the baseline (p < 0.05) according to
Student’s paired t-test where each pair consists of the eval-
uation scores of two methods for a query. Hereafter in this
paper, we discuss statistical significance based on the same
test procedure.
8.3 Discussion on Evaluation Results
Comparison with baseline scores: First, we compare
each score with the baseline score on the same evaluation
measure. As shown in Table 3, for 10/12 pairs of one of
our heading-aware methods and an evaluation measure, our
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methods achieved the better scores than the baseline scores.
For 7/12 pairs of an existing method and an evaluation mea-
sure, existing methods also improved the baseline scores.
However, according to the t-test procedure, only the improve-
ments by the existing Span and our heading-aware Span
methods were statistically significant on some of the mea-
sures. Especially, our HA-Span method statistically signifi-
cantly improved the baseline rankings on all the measures.
Moreover, our HA-Span method also achieved the best scores
among all the methods on all the measures. These facts
strongly supports the validity of our assumptions about the
effects of heading structure to logical proximity and the ef-
fectiveness and robustness of our hasd measure and HA-Span
method for query-biased document ranking.
Comparison with the existing methods: Next, we com-
pare the scores of our heading-aware methods with their cor-
responding existing methods on each evaluation measure.
As shown in Table 3, all our heading-aware methods con-
sistently achieved the even or better scores than the corre-
sponding existing methods on all the evaluation measures.
In details, our heading-aware methods improved the scores
of the existing methods in 11/12 cases. This fact supports
the effectiveness and robustness of our hasd measure. How-
ever, because of the small number of queries, the difference
between the scores of our methods and the corresponding ex-
isting methods were not statistically significant except for
ERR-IA@20 and α-nDCG@20 of HA-MinDist and MinDist.

9 Conclusion
In this paper, we first explained our assumptions about

the effect of heading structure to logical proximity: The log-
ical distance between a term occurrence in a heading and
another term occurrence in the block associated with the
heading is shorter than their simple distance, while the log-
ical distance between two term occurrences in two different
blocks is longer than their simple distance unless one of them
is in a heading and the other is in its associated block. Based
on these assumptions, we proposed a heading-aware prox-
imity measure and our heading-aware variants of three ex-
isting proximity-aware document scoring methods. We then
optimized the parameters of the methods, and finally eval-
uated all the methods by using TREC data sets. Most of
optimized parameter values of the functions and evaluation
scores supported the validity of our assumptions. The eval-
uation results also supported the robustness and usefulness
of our hasd measure and the heading-aware Span method.
Our HA-Span method achieved the best scores among all the
methods on all the evaluation measures. Moreover, the score
differences from the baseline scores were all statistically sig-
nificant. These facts also support the effectiveness and ro-
bustness of HA-Span for query-biased document ranking.
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