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Recently, there has been an increasing interest in
search in time-dependent road networks where the
travel time on roads depends on the time. In such
a time-dependent network, the result of & Nearest
Neighbor (KANN) queries, which search the & near-
est neighbors (KNNs) from the specified location, de-
pends on the query-issuing time. Therefore, exist-
ing approaches in static networks are not directly
applied for KNN query in time-dependent road net-
works. In this paper, we propose a ANN search method
to achieve a small number of visited vertexes and
small response time in time-dependent road networks.
In our proposed method, an index structure is con-
structed based on the minimum travel time on roads
in the preprocessing phase. In query processing, a
network is expanded by A* algorithm with referring
the minimum travel time in the index until ANNs are
found. An experimental result shows that our pro-
posed method reduces the number of visited vertexes
and the response time compared with an existing
method.

1. Introduction

Location-based service (LBS) is a typical application for
road networks. In an LBS, it is common for a user to issue
k Nearest Neighbor (KNN) queries, which search the infor-
mation on the & nearest neighbors (KNNs) from the specified
location (query point). For example, a user on a car can effec-
tively acquire the information or coupons on the 10 nearest
restaurants by using a ANN query.

There have been many existing methods for processing
queries which are efficient for static road networks where
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Figure 1: The average travel time on a road in Osaka city,
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the travel time on each road is constant. On the other hand,
recently, there has been an increasing interest in search
in time-dependent road networks where the travel time on
roads depends on the time (i.e., it is a function of the time).
Figure 1 shows an example of the average travel time on a
road in Osaka city, Japan. Since actual travel time on roads
is time-dependent, i.e., it depends on traffic on roads, the
road network in a real environment is a time-dependent net-
work rather than a static network.

KNN search in such a time-dependent road network has
some deferences from that in a static road network. In Figure
2, a user searches the nearest store at 8 AM, and in Figure 3,
another user searches the nearest store at 2 PM. In Figure 2,
the nearest store from the user is store A because the travel
time to store A is the smallest (3 min.). On the other hand,
in Figure 3, it is store B at 2 PM.. Thus, the ANN result
in time-dependent road networks is not fixed (i.e., the kNN
result depends on the query-issuing time) since the travel
time on roads is not static. Therefore, existing approaches
are not directly applied for KNN search in time-dependent
road networks.

In [3], to search KNNs in time-dependent networks, the
authors proposed the Time Dependent Incremental Network
Expansion (TD-INE) algorithm which is based on Dijkstra’s
algorithm [5]. In this method, vertexes in a network are
visited in order of travel time from the query point until &
data objects are found. This method is an on-demand search
which can work when the travel time on roads is both static
and time-dependent. However, this method expands the net-
work in every direction to search all the vertexes to which
the travel time from the query point is smaller than that to
the k-th nearest data object. Therefore, the number of visited
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vertexes increases, and thus, the response time for a query
becomes large.

Compared with Dijkstra’s algorithm, A* algorithm is effi-
cient for the shortest path search on road networks. In A*
algorithm, when searching from a vertex s (start point) to a
vertex d (destination), vertexes are visited in order of cost
which is the travel time from s to a visited vertex plus the
estimated travel time from the visited vertex to d which is
given by a heuristic function. A* algorithm achieves a small
number of visited vertexes since a network is expanded only
toward d.

A* algorithm is also effective for ANN search to achieve a
small number of visited vertexes. It is expected that A* algo-
rithm can reduce the number of visited vertexes and the re-
sponse time for a query than that in TD-INE which is based
on Dijkstra’s algorithm. Here, the performance of A* algo-
rithm depends on the heuristic function, but it is difficult to
appropriately estimate the travel time to d since the travel
time on roads is time-dependent. Moreover, while A* algo-
rithm requires to specify the destination in advance, the des-
tinations are unknown in kNN search, i.e., the destinations
are the search target.

In this paper, we propose a kNN search method to achieve
a small number of visited vertexes and also small response
time in time-dependent road networks. In our method, an in-
dex structure is constructed for each time segment based on
the minimum travel time in the time segment in the prepro-
cessing phase. The entries of the indexes are the CNNs (C
is a constant) from each vertex and the travel time through
the fastest path to each of CNNs. In query processing, A*
algorithm is executed with the indexes for the a time seg-
ment including the query-issuing time. Starting from the
query point, a vertex is visited toward a data object, which
is indexed on the vertex and not already found, in order of
cost (i.e., expected travel time) until k£ data objects are found.
Here, the expected travel time is calculated by using the
travel time in the index. Our proposed method can reduce
the number of visited vertexes in search because the search
space is expanded only toward data objects which are poten-
tial ANNs.

The remainder of this paper is organized as follows. In
Section 2, we define kNN query in time-dependent road net-
works. In Section 3, we introduce related work. In Section
4, we present our proposed kNN search method. In Section
5, we discuss the results of simulation experiments, and in
Section 6, we summarize the paper. Note that the original
content of this paper has been published in [9].

2. Problem Definition

In this section, we define ANN query in time-dependent
road networks. In this paper, we assume that there are static
data objects on the road network, and a user acquires the &
nearest data objects by issuing a query. For simplicity, the
query point specified by the user is the location of the query-
issuing node. We model a time-dependent road network into
a weighting graph where the weight of each edge is time-
dependent and is statically defined in advance. In this paper,
points of data objects (e.g., restaurants and shops) are on ver-
texes. The time-dependent road graph, G,(V, E), is defined as
follow.

Definition 2.1: Time-dependent road graph, G,(V,E).
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Figure 4: time-dependent graph

In G,(V,E), V = {v1,v2,..., v} 18 a set of vertexes and E (E C
V'xV)is a set of edges. An edge e is described by e(v;,v;). G, is
an undirected graph, i.e., e(v;,v;) = e(v;,v;). Each edge e(v;,v))
has a cost, ¢, (), which is the travel time from v; to v; at time
t. Here, the minimum travel time of e(v;,v;) between ¢ and ¢
is described as min(c,,,, [z, t']).

Definition 2.2: Travel time through paths.

A path is described as {s = v4, Vs, Ve, = d where
e(Vg V) € E,i=1,..., j— 1. Here, s is the vertex of start point
and d is the vertex of destination. The travel time through
a path from s to d on G, at time ¢, is defined by the following
equation:

-1
TT(s —d,ty) = Cuyva

I;

) (1)

i+l

Here, ty = t,ti1 = ti t ¢y, (), 0= 1, j = L.

Definition 2.3: Fastest path in a time-dependent road
network.

In G,, TDFP(s,d,t,) is defined as the fastest path from s to
d at time 7,. For example, when ¢, is 5, TDFP from v, to vs
in Figure 4(a) is TDFP(vy,vs,5) = {vi, v, v3,vs}. Moreover, the
travel time through TDFP(s,d,t,), TDFT(s,d,1,), is defined by
the following equation:

TDFT(s — d,t,) = TT(s — d.1,) o)

Definition 2.4: /NNs in a time-dependent road net-
work.

A kNN query in a time-dependent road network acquires k
data objects with the minimum cost (i.e., the travel time from
the query point).
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3. Related Work

3.1 The fastest path search in time-dependent
graphs

Since KNNs on road networks is decided based on the travel
time of the fastest (shortest) path from the query point to
each data object, fastest path search is related to ANN search.
In [6], the authors probed that Dijkstra’s algorithm can be
applied for the fastest path search in time-dependent graphs.
On the other hand, in [4], the authors proposed a method
using bidirectional A* algorithm, which is more efficient than
Dijkstra’s algorithm in fastest path search. These methods
can acquire the fastest path to the destination, but they are
not directly applied for kNN search because the destinations
are multiple and unknown (i.e., search targets themselves)
in kNN search.

3.2 kNN query processing in time-dependent

road networks

[3] is the first study that addressed KNN search in time-
dependent road networks, and proposed TD-INE. This
method is based on Dijkstra’s algorithm like INE [10]. In
this method, vertexes are visited in order of distance from
the query point to each vertex until £ data objects are found.

In [2], the authors proposed a ANN search method using
Tight Network Index (TNI) and Loose Network Index (LNTI).
Using TNI, a query immediately finds the nearest data ob-
ject from any query point, while using LNI, the query selects
the candidates of NN data objects because it can know data
objects closer to the nearest data object from the query point.
Therefore, the fastest path to the candidates of KNN data ob-
jects is calculated, and then, ANNs are decided. However, in
this method, many iterations of the fastest path calculation
are required, which causes an increase of the response time
for a query. Moreover, when the density of data objects is
high, the search time increases since the number of candi-
dates is large.

In[1], the authors proposed an A* algorithm based method
for kNN search in time-dependent road networks. This
method achieves smaller response time than that by Dijk-
stra’s algorithm. In this method, a heuristic function in A*
algorithm is the minimum travel time during all time on
each edge. However, in a network where there is a big dif-
ference between the minimum and maximum travel time on
each road, e.g., between the midnight and rush hours, vis-
ited vertexes are not efficiently pruned because the heuristic
value is far from the actual travel time.

4. kNN search method

In this section, first, we describe the design policy of
our method, and explain the heuristic function used in our
method. Then, we explain our proposed method using the
TD-FTT index.

4.1 Design Policy

In ANN search in a time-dependent road network, the result
of kNN queries depends on the query-issuing time since the
travel time on each edge depends on the arrival time at the
edge. Calculating the travel time of the fastest path from
every vertex to each object in advance and storing it as an in-
dex entry is unrealistic since it is too costly in terms of com-
putation and storage space. Therefore, in our method, ANN

queries are processed by network expansion, and we adopt
A* algorithm to reduce the search for unnecessary vertexes
during the network expansion.

A* algorithm finds the fastest path from the start point to
the destination. When searching via vertex n, the travel time
through the fastest path from the start point to the destina-
tion via n, f(n), is calculated as f(n) = g(n) + h(n). Here, g(n) is
the travel time through the fastest path from the start point
to n, and /(n) is the travel time through the fastest path from
n to the destination. If g(n) and A(n) are already known, f(n)
is easily calculated.

However, h(n) is basically unknown in advance although
g(n) is known during searching. Therefore, in A* algorithm,
f(n) is altered to f*(n) = g(n) + h*(n). Here, h*(n) is called
a heuristic function, i.e., the estimation value of the travel
time from 7 to the destination. In A* algorithm, the search
result when using 4*(n) is guaranteed as correct when ¥n,0 <
h*(n) < h(n). Moreover, for Vn, hj(n) < h3(n) < h(n), 13 is a better
function than 4], i.e., unnecessary visits of vertexes are more
suppressed. Therefore, it is better to adopt a value closer to
the actual travel time as the heuristic function.

4.2 Heuristic function in our method
Definition 4.1: A road network with the minimum
travel time during time segment [7,7].

We define a graph G,(V, E) with the minimum travel time
on each edge during time segment [¢,#'], as Grrr[t,t'](V, E). In
Grrrlt, 1V, E), sets of V and E are the same as in G,(V,E),
and the cost of each edge, e(v;, v)), equals min(c,,,,[#,']). Here,
FP[t,t'](s,d) is the fastest path from s to d on Grrr[t,?'](V, E),
and described as FP[t,7](s,d) = {s = Va,, Vays s Vo, = d}. The
travel time from s to d in [£,7'] is defined by the following
equation:

J-1
FTT[0)s — d) = ) min(cy, s, [60]) 3)
i=1
Here, t, € (1,7}, FTT[t,t'](s — d) < TDFT(s —> d. 1,).
Definition 4.2: Heuristic function based on the mini-
mum travel time during time segment [z, 7'].

First, we assume that the query-issuing time is #,(; € [1,7'])
and the arrival times at all XANN data objects (starting from
t,) are earlier than #. Here, the set of all data objects, D, is
defined as {d|,d,, ...,d,}. After a query is issued at f,, a net-
work is expanded from the query point, ¢, and let us assume
that vertex n is currently visited. Here, a set of objects in
the query result which are already found, NV, is defined as
{NN{,NN,,...,NN;} (I < k). In the network expansion, the des-
tination from » is defined as the nearest data object from n,
d(n) (d(n) € D\ NN). Therefore, h*(n) = FTT[t,¢'](n —> d(n)).

4.3 kNN search method with index

In our proposed method, the ANN result is acquired with a
small number of visits of vertexes owing to A* algorithm
with the heuristic function described in subsection . How-
ever, if the value of the heuristic function (which we call
heuristic value) is calculated during query processing, the
response time becomes large. Therefore, the expected travel
time from each vertex to a data object is calculated in ad-
vance and stored as an entry of indexes, which we call the
Time Dependent Fast Travel Time (TD-FTT) index.
Preprocessing: First, the entire time [0,7,] is divided
into some time segments [0,#], [f1,%],..., [f-1,6]. After
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Algorithm 1 TD-FTT Index(Grr7[t, 7 (V, E), C)

Algorithm 2 tNN(q, start_time, index ,k)

// m:the number of vertexes in a network
// C:the number of data points held by an index of each vertex
// vertex: a vertex in a road network
/| INE(vertex[i],c): a function for kNN search algorithm based on Di-
jkstra’s algorithm[10]
/' INE(vertex[i],k).data: ID of the k-th nearest data objects from
vertex|i]
/I INE(vertex[i), k).travel_time: the travel time of vertex[i] is k-th nearest
data object from vertex[i]
/] index[i]: a TD-FTT index on a vertex i at [#;, fi+1]
// index[i].rank[j]: the value is j when j-th nearest data object in
index[i]
// index[i].data[j]: for a vertex i, j-th nearest data object in
Grrrlt, U1V, E)
// index[i).heuristic_value[ j]: for a vertex i, the travel time from a vertex
i to the j-th nearest object in Grrr[t, ' 1(V, E)
/I vertex[i].pointer: the pointer for an index on a vertex i
fori=1tomdo
for j=1tocdo
index[i].rank[j] = j;
index[i].data[j] = INE(vertexl[i), j).data;
index[i).heuristic_value[ j] = INE(vertex[i], j).travel_time;
end for
vertex|i].pointer = 0;
end for
return index

in [0, t
Data Heuristic
object value

store A 1 min

store B 6 min.
in[t.t
Data Heuristic
object value

store C 4 min

store A 5 min.

Figure 5: Example of a TD-FTT index

Grrrlti, i J(V, E) is constructed, for each vertex, CNNs from
itself on Grrr[t;, t::11(V, E) are found by Dijkstra’s algorithm.
At the same time, the travel times to CNNs are calculated.
Then, the C nearest data objects and their travel times are
stored in an index. Algorithm 1 shows the pseudo code of a
TD-FTT Index construction and it is processed for each time
segment. In our proposed method, to effectively search kNNs,
the heuristic function is based on the minimum travel time
in a time segment which is more closer to the actual travel
time than the minimum travel time during the entire time.

Figure 5 shows an example of constructing the TD-FTT
index in [¢,#'] on vertex b where data objects are stores. Here,
the travel times of (b, store A), (b,¢), (d,e), (e,2), (d,store B),
and (g, store C) are respectively 5 min, 1 min, 2 min, 2 min, 3
min, and 1 min. When C = 2, the travel times from 5 to Store
C and Store A are stored as heuristic values in the index on
b.

Processing NN search: In our proposed method, ANN
queries are processed by A* algorithm referring to heuris-
tic values in indexes. Since an index is constructed for each
time segment, the index for [z,#] (¢ € [¢,#]) is referred when a
query is issued at ¢. Starting from the query point, a vertex
is successively visited toward a data object, which is indexed

// q:the query point

// start_time: the query issuing time

/| come_time: arrival time on the edge

/] index:FTT index

// k: the number of requested number of ANNs

// u: the reference node

// vertex: a set of nodes

/] vertex[i]: vertex i

/] vertex[i].travel_time: the travel time from the query point to vertex i
/] vertex[i].label = 0: vertex i is not enqueued

/] vertex[i).label = 1: vertex i is already enqueued

/] vertex[i).cost: vertex[i].travel_time + FTT(n — d(n))

/] vertex[i].pointer: pointer to heuristic value in the index on vertex i
// vertex[i].ad jacent: a set of neighboring vertexes of vertex i

/I queue: the priority queue

/] sort(queue): sort vertexes in queue in a cost ascending order

/I TD(road_id, come_time): a function calculating the travel time from
road_id and an arrival time come_time

/I Datapoint: a set of data objects

/] Result: a set of the k nearest data objects

/] Result.insert(u): insert u to Result

1: fori=0tob-1do

2 if start_time € [t;,t;11] then
3 fori=1tondo
4: vertex[i].travel_time = co;
5: vertex|i].label = 0;
6: end for
7 q.label = 1;
8 g.travel_time = 0;
9: q.cost = index[q].travel _time[0];
10: enqueueq;
11: while queue is not empty and Result.size() < k do
12: sort(queue);
13: u « dequeue;
14: come_time = u.travel_time + start_time;
15: for j = 1 to u.adjacent.size() do
16: travel_time = TD(e(u,u.adjacent[j]), come_time) +
u.travel_time;
17: if travel_time < u.ad jacent[ j].travel_time then
18: u.ad jacent[j].travel_time = travel_time;
19: if u.ad jacent[ j].pointer.rank < ¢ then
20: while w.ad jacent| j].pointer.data € Result do
21: u.ad jacent[ j].pointer =
u.ad jacent[ j].pointer + 1;
22: end while
23: end if
24: u.ad jacent[ j].cost = travel_time — +
u.ad jacent[ j].pointer.heuristic_value;
25: if w.ad jacent[j].label + 1 then
26: u.ad jacent[j).label = 1;
27: enqueueu.ad jacent[ j);
28: end if
29: end if
30: end for
31: if u € Datapoint then
32: Result.insert(u);
33: end if
34: end while
35: end if
36: end for

37: return Result

on the vertex and not already found, in order of cost (i.e.,
expected travel time) until £ data objects are found. Here,
the expected travel time is calculated by the heuristic value
h*(n) of the data object in the index. Algorithm 2 shows the
procedures of the proposed KNN search algorithm.

Figure 6 shows an example of 2NN search in a time-



Regular Paper

DBSJ Journal, Vol.13, No.1
March 2015

<Ist step>
Index in [t, ] EOTEREIRE p
—_—
Data Heuristic Data Heuristic 2 min. + 3 mi 5 mi
object  value object  value ¢ min. min. min.
store A | 3 min. store C | 6 min. f 3 min. + 6 min. 9 min.
\store B \ 5 min. \ store B \ 7 min. \ <2nd step>
<2nd step> ueue Calculation Cost
Indexin[t,t'Jonb Indexin[t, t’]Jond b 4 min. + 1 min. 5 min.
Data Heuristic Data Heuristic d 5 min. + 2 min. 7 min.
object  value object  value £ 3 mi . .
n 5 min. + 6 min. 9 min.
store A | 1 min. store B | 2 min. Srd =
[store B[ 7 min. |||[storeA | 6 min. | rd step
Queue Calculation Cost
<3rd step> P . .
. . d 5 min. + 2 min. 7 min.
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Data | Heuristic h 8 min. + 5 min. Eﬁ 13 min,|
object  value N N N
1 min. a 8 min. + 6 min. 14 min,
c 13 min. + 6 min. 19 min,

(b) References of indexes (c) Priority queue

Figure 6: Example of 2NN search

dependent road network at time 7 (t < T < ¢). The query
first visits vertexes e and f because these are neighboring
vertexes of the query point ¢, and the two vertexes are en-
queued. Then, the expected travel time for e is calculated by
the travel time of (¢, ¢) and the minimum heuristic value (for
store A) in the index on e at [f,#]. Thus, the cost on e is 5
min (2 min + 3 min). In the same way, the expected travel
time for f is calculated by the travel time of (¢, /) and the
minimum heuristic value (about store C) in the index on [ at
[¢,7], and thus, the cost on fis 9 min (3 min + 6 min). Because
the cost on e is the smallest in the queue, ¢ is dequeued, and
then, the vertexes b and d which are neighboring vertexes of
e are enqueued. In the next step, the travel time of (¢,d) is
calculated as 5 min because the travel time of (¢, d) is 3 min.
Thus, the cost of d is 7 min (5 min + 2 min) since the heuristic
value equals to 2 min because Store B is the nearest object
from d. After the calculations, b is dequeued because b has
the minimum cost in the queue, and then, the vertexes a and
¢ are enqueued, which are the neighboring vertexes of 5. As
a result, store A is found as the nearest data object. During
the processing, the index about store A is not referred at all
after store A is found as the result. The vertexes are visited
in order, and finally, the search is finished when store B is
found as the 2nd nearest data object.

Table 1: Parameter configuration

Parameters Values (Range)
The number of data objects | 300 (100~500)
k 10 (1~20)

5. Simulation Experiments

5.1 Simulation Model

We conducted experiments on the computer with Core i7
(3.4GHz) and 8GB main memory and used C++ to imple-
ment our method. We used Boost Graph Library 1.54.0 !
for maintaining the network graph. To evaluate the perfor-
mance with a real data set, we used the Osaka city map pro-
vided from the Japan Digital Road Map Association, and the
car trace data provided from the Honda Motor Co., Ltd.2. The
area size of the map is about 10km X 20km, and the number
of intersections (vertexes) and roads (edges) are respectively
14,027 and 21,189. The points of data objects are randomly
chosen from all the vertexes. We calculated the travel time
on each edge based on the result of a map matched car trace
data. For each edge, the travel time is defined as the average
of the travel times of map matched cars par hour between 9
AM and 6 PM. Here, the travel times of edges on which no
car or only a car passed from 9 AM to 6 PM, is applied for the
cost model of the edge on which the largest number of cars
passed.

We compare the performance of our proposed method with
that of two different methods. The first method is TD-INE
[3], and the other is our method which uses the minimum
travel time in 9 hours (entire time) as the heuristic function
(denoted by “FTT” in the graphs). In our proposed method
(denoted by “TD-FTT” in the graphs), we divided 9 hours into
3 time segments (9 AM - 0 PM, 0 PM - 3 PM, and 3 PM - 6
PM), i.e., 3 indexes were constructed.

Table 1 shows the parameters used in the simulation ex-
periments. Each parameter was set by default at the con-
stant value to the left of its parenthetical range, and varied
over this range in the simulations. The number of indexed
data objects in each index, C, is 20.

The query point is randomly chosen among all the vertexes
and a kNN query from the query point is processed. We re-
peated this process 100 times (i.e., 100 queries) and evalu-
ated the following two criteria.

e Number of visited vertexes: We examine the number of
vertexes visited until receiving the ANN result. We de-
fine “number of visited vertexes” as the average number
of visited vertexes for all queries issued.

e Response time: We examine the time from issuing a
query until receiving the ANN result. We define “re-
sponse time” as the average time for all queries issued.

5.2 Impact of &

Figure 7 shows the simulation results with varying k. From
Figure 7(a), in TD-FTT and FTT, the number of visited
vertexes is smaller than that in TD-INE. This is because
many unnecessary visits of vertexes are pruned by A* algo-
rithm which does not expand the search space in all direc-
tions. Moreover, the number of visited vertexes in TD-FTT
is smaller than that in FTT because the heuristic function in
TD-FTT effectively works, i.e., it is closer to the actual travel
time.

1http [ /www.boost.org/doc/libs/1_54_0/libs/graph/doc/index.html
2htp - | Jwww.honda.co.jp/



Regular Paper

DBSJ Journal, Vol.13, No.1
March 2015

1000 1

., 900 | =¢=TD-FTT I 09 | =¢<TD-FTT N
g so | 0% -H-?];TINE
3 . - ~==TD-
5 700 -5-TD-INE % 07
E 600 § 0.6
2 500 2 0.5
> &
%5 400 2 04
5 300 2 03
E 200 0.2
Z 100 0.1
0 0
0 5 10 15 20 0 5 0 15 20
k k

(a) Number of visited vertexes (b) Response time

Figure 7: Impact of &

1600 2
—=TD-FTT 18 b <=TD-FTT

g 1400 [y —FTT 16l ~~FTT
2 1200 -=-TD-INE - ~==TD-INE
2 ;‘ 1.4
B E 12
I§ 9 1
> z
S g 08
° 2
3 & 0.6
El 0.4
Z 02

0 0

100 200 300 400 500 100 200 300 400 500

The number of data objects The number of data objects

(a) the number of searched vertexes (b) the search time

Figure 8: Impact of the number of data objects

From Figure7(b), when & is 1, the differences of response
time among all the methods are trivial. This is because the
nearest data object is very close to the query point, and thus,
the fastest path to the nearest data object can be immediately
calculated in all methods. When £ is large, the response time
in TD-FTT is smaller than that in TD-INE because the num-
ber of visited vertexes is smaller. However, the differences of
response time between TD-FTT and TD-INE is smaller than
that of the number of visited vertexes (shown in Figure 7(a)).
This is because in TD-FTT (and FTT), the response time in-
cludes the time for referring indexes.

5.3 Impact of the number of data objects

Figure 8 shows the simulation results with varying the num-
ber of data objects. From Figure 8(a), the number of visited
vertexes in TD-FTT and FTT is smaller than that in TD-INE.
This is because TD-INE adopts Dijkstra’s algorithm, which
makes much more unnecessary visits of vertexes than A* al-
gorithm, especially when the number of data objects is small
(i.e., the density of data objects is low).

From Figure 8(b), when the number of data objects is
large, the response time in all methods is small because &
nearest objects exists in a small area due to the high density
of data objects. The response time in TD-FTT is smaller than
that in TD-INE, but the differences are smaller than in Fig-
ure 8(a). This is due to the same reason described in subsec-
tion . When the number of data objects is 100, the response
time in FTT is larger than that in TD-INE. This is because in
FTT, the time for referring indexes increases as the number
of visited vertexes increases since the heuristic value is far-
ther from the actual travel time. On the other hand, TD-FTT
can reduce the response time because the number of visited
vertexes is small by using A* algorithm with finer heuristic

functions. This shows that indexing heuristic values for finer
time segments is efficient because these values are closer to
the actual travel times.

6. Conclusion

In this paper, we proposed a ANN search method in time-
dependent road networks to reduce the number of visited ver-
texes and response time. In our proposed method, a ANN
search is conducted with TD-FTT index and A* algorithm.
In the preprocessing phase, an index is constructed for each
time segment based on the minimum travel time in the time
segment. The entries of indexes are CNNs from each vertex
and the travel times through the fastest paths to the CNNs.
In query processing, A* algorithm is executed with the in-
dexes for the time segment including the query-issuing time.
Starting from the query point, a vertex is visited toward a
data object, which is indexed on the vertex and not already
found, in order of cost (i.e., expected travel time) until k£ data
objects are found. Here, the expected travel time is calcu-
lated by using the heuristic value of the data object in the in-
dex. The results of our experiments show that our proposed
method reduces the number of visited vertexes and the re-
sponse time compared with the existing method. Moreover,
the results show that indexing heuristic values for finer time
segments is efficient. As part of our future work, we plan to
extend our method to handle continuous kNN search.
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