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Random sample generation from a database can be
helpful to exploratory data analysis because of its ca-
pability of fast approximate aggregation of large data.
For efficient run-time random sample generation, ran-
dom clustering, a technique to randomly sort table
rows on disk in advance, has been extensively used in
previous research. However, this technique can ran-
domize rows of a table only for a single unit. Thus,
if data analysts require sampling for other units than
the one used for clustering, single-unit random clus-
tering is no longer of help and causes a significant
slowdown due to many random disk accesses.

In this paper, we propose a random clustering tech-
nique for multiple units rather than for a single unit.
This technique can randomize table rows for multi-
ple units on disk. After clustering, a data analyst can
select any one of the units and then samples for the
selected unit can be efficiently read from disk until
one satisfies the given filtering criteria and size con-
dition. Experiments show that the new random clus-
tering technique for multiple units generated samples
significantly faster than traditional single-unit ran-
dom clustering.

1. Introduction
Random sampling from a database has been studied for

a long time, and it is gaining even more significance owing
to the emerging demand for large data analyses. Calculat-
ing exact aggregates over massive data requires long execu-
tion times and vast amounts of resources. Sampling can re-
duce such costs by calculating approximate aggregates over
a small amount of data extracted from the original tables.

Run-time sample generation has been used in approxi-
mate query processing (AQP) as well as sample precomput-
ing. In precomputing approaches, samples are precomputed
and stored apart from the original data so that approximate
aggregates can be calculated from the samples. On the other
hand, run-time generation approaches do not store such pre-
computed samples. They extract rows in random order at
query time and calculate approximate answers from them.
An advantage of run-time approaches is their high adapt-
ability to ad-hoc queries. Run-time approaches can generate
a sample of appropriate size for estimating the answer to a
given query by continuously expanding the sample size un-
til it becomes sufficient. This property has made run-time
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sample generation a key component of online aggregation
[8], which is a framework for presenting a running estimate
based on a sample until the user is satisfied with it.

The time efficiency of run-time sample generation depends
on the physical data layout on disk. Without any assumption,
randomly sampled rows may be distributed over a large part
of the disk-resident original table, wherein the random disk
accesses substantially slow the sampling process. To avoid
this problem, the first online aggregation paper [8] proposed
the random clustering technique, which randomly sorts rows
in a disk-resident table in a pre-processing phase. If rows
are randomly clustered, a sample can be efficiently obtained
through a sequential scan because rows in continuous blocks
can be considered a random sample and this sample is eas-
ily expanded by scanning more blocks. Since then, random
clustering has come to be viewed in the online aggregation
literature, e.g., [7, 9, 13], as a key technique for accelerating
the run-time sample generation process.

AQP approaches based on sampling have been developed
to present approximate answers by automatically choosing
or generating samples in the background. However, simply
giving approximate answers is not sufficient for data ana-
lysts familiar with advanced statistical analysis tools. Most
statistical analysis tools today have more sophisticated anal-
ysis and visualization functions than the aggregate functions
executable in database systems. As analysts would want to
take full advantage of their favorite tools, they would prefer
simply getting samples according to the requirements they
give explicitly for further analysis in their own tools, instead
of only getting approximate answers.

Generating samples according to explicitly given require-
ments is a challenging task, as is AQP. In exploratory data
analysis, analysts need to perform analyses iteratively and
from different perspectives. For example, they may want to
estimate the average sales per customer or per order, and
then they need to sample customers or orders, respectively;
here, customer or order are the sampling units of their anal-
yses, and they need to change sampling units flexibly ac-
cording to the progress of their exploration. However, ran-
dom sampling using different sampling units causes a severe
slowdown even if the data are randomly clustered. This is be-
cause the traditional random clustering technique can only
randomize a table according to a single unit (in most cases, a
row) and so we call the traditional technique single-unit ran-
dom clustering. If analysts choose other units for sampling
than the one used for clustering, traditional single-unit ran-
dom clustering is no longer of help and causes a significant
slowdown due to many random disk accesses. We call this the
unit mismatch problem. This problem is inherent to single-
unit random clustering, and any online aggregation system
based on traditional random clustering may suffer from this
problem when the aggregation needs to use different units.

In this paper, to avoid the unit mismatch problem, we pro-
pose a random clustering technique for multiple sampling
units rather than a single unit. Our multi-unit random clus-
tering technique can randomize a table for several sampling
units in advance so that samples of different sizes for any one
of the units can be read from disk quickly. If a data analyst
gives her requirements as to the target sampling unit, the
filtering criteria and the size condition, we can iterate the
sample generation by increasing the sample size until the
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Figure 1: Example database for illustrating the unit
mismatch problem. PK represents a primary key, and
FK represents a foreign key.
sample satisfies the given requirements.

Experiments show that our multi-unit random cluster-
ing generate samples for multiple units significantly faster
than traditional single-unit random clustering because the
traditional method is affected by the unit mismatch prob-
lem. By iterative sampling, samples satisfying the given
requirements were efficiently generated from the database
clustered using our technique even though the require-
ments involved sampling of distinct values in a foreign
key (typical examples that suffer from the unit mismatch
problem). The source code of the sampling system is
available online (https://github.com/nec-solutioninnovators-
ilab/sampling-sql).

The rest of this paper is organized as follows. In Sec-
tion 2, we discuss the unit mismatch problem. Section 3 ex-
plains the multi-unit clustering technique, the iterative sam-
pling algorithm that returns samples according to analyti-
cal requirements and the system that executes the iterative
sampling. In Section 4, we experimentally evaluate our ap-
proach. We discuss related work in Section 5 and give our
conclusions in Section 6.

2. Unit Mismatch Problem
The unit mismatch problem is a problem of many random

disk accesses that occur when the sampling unit differs from
the unit of random clustering. To illustrate this problem, let
us consider the database shown in Figure 1. Each row in
table lineitem represents a line item of a transactional order
and has a primary key l linekey and foreign keys correspond-
ing to the primary keys of three other tables that represent
orders, parts, and suppliers related to the line items. lineitem
and the other three tables have many-to-one relationships:
An order (part or supplier) may be related to more than one
row in lineitem. We assume that all tables are so large that
sampling is needed to analyze them. This means that this
database has four entity types that can be chosen as the sam-
pling unit: a line item, an order, a part, and a supplier.

Let us see what happens when all the tables are randomly
clustered in the typical way, i.e., when all rows are randomly
shuffled in advance. If the analyst wants to estimate the
average sales per line item by sampling from table lineitem,
the sampling can be done efficiently by making a sequen-
tial scan of the first rows in lineitem. However, If the analyst
next wants to estimate the average total sales per order, she
needs to randomly choose a small number of orders, collect
all line items related to the sampled orders, and then aver-
age the sum of the prices for the orders. The orders can be
efficiently sampled by making a sequential scan of the first
rows in table order. However, the rows related to each order

are randomly distributed over table lineitem because the rows
in lineitem are randomly shuffled and there is no guarantee
that rows having the same l orderkey value can be found in
adjacent disk blocks. Thus, random sampling considering an
order as the sampling unit is slowed down by many random
disk accesses to lineitem.

In general, by using traditional random clustering, a table
can be clustered for only a single unit, and many random disk
accesses can be avoided only if the sampling unit matches
the unit of the clustering. If one of the other units is chosen
as the sampling unit, random disk accesses are not reduced.
One possible solution is to replicate tables as many times as
the number of possible units and randomly cluster the repli-
cated tables with respect to different units in advance. This
approach, however, increases the storage costs by a factor of
the number of possible units, which is too expensive if the
database is very large. Thus, the purpose of this paper is to
overcome this problem without replication.

3. Multi-unit Clustering
3. 1 Clustering Procedure
We explain how rows can be randomly clustered for multi-
ple sampling units. Large tables generally have several at-
tributes such that the distinct values in each of them rep-
resent numerous entities such as IP addresses or URLs and
can be used as sampling units. We call such attributes unit
keys and our multi-unit clustering technique clusters rows in
a table so that we can efficiently sample rows considering the
distinct values of the chosen unit keys as the sampling units.
In Figure 1, for example, l linekey, l orderkey, l partkey and
l suppkey are good choices for the unit keys of lineitem. Our
technique leverages compound clustering indexes, which are
supported by many database systems. First, we designate
several attributes as the unit keys. Then, we set compound
clustering keys in the tables by appending several attributes
calculated from the given unit keys. We use a pairwise in-
dependent hash function h(v) that maps each distinct value
v of the unit keys to [0, 2L − 1]. We assigned each distinct
value v of the unit keys a level:Level(v) = L − blg h(v)c − 1 if
h(v) > 0 and Level(v) = L for h(v) = 0. The minimum level
is 0, and the maximum is L. The probability that the level
of v is at least l ∈ [0, L] is Pr(Level(v) ≥ l) = 2−l. Thus, sam-
ples of exponentially different sizes are assigned to different
levels. In the sampling phase, these samples are read in or-
der of decreasing levels until enough amount of sample is
extracted. This level function is the same as the one used
in distinct sampling [6] to keep the sample size small, but
we use it to cluster the original table in preparation for sam-
pling using different units. If the table has U unit keys, we
append U level attributes that store the levels for the unit
keys and append a level sum attribute that stores the sum
of the U levels. Then, we cluster the table by setting a com-
pound clustering key in it. The first component of the key is
the level sum attribute, and the successive components are
the level attributes. If the table was already assigned a clus-
tering key, the original clustering key is appended as the last
component of the new clustering key. For example, if table
orders has one clustering key o orderdate and three unit keys
o orderkey, o custkey and o productkey, we set a new cluster-
ing key composed of (level sum, o orderkey level, o custkey level,
o productkey level, o orderdate) after appending the level sum
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attribute and the three level attributes.

3. 2 Extract Samples of Different Sizes
Let us see how samples of different sizes can be extracted
from a clustered table. First, one of the unit keys of the table
is chosen as the target unit key that represents the sampling
unit. Then, the target level l ∈ [0, L] is chosen to determine
the sample size. All distinct values of the target unit key
that have levels being at least l are sampled. A sample table
s of a target table t is a subset of t that consists of rows in t
that have the sampled values in the target unit key of t. For
example, if the analyst wants to extract a sample from ta-
ble lineitem in Figure 1 considering an order as the sampling
unit, then the target unit key is l orderkey and sample table
l sample is defined as follows:

WITH l sample AS (SELECT * FROM lineitem
WHERE l orderkey level ≥ l)

l orderkey level stores the levels of l orderkey. The sample for
l = L is the smallest sample, and the sample size increases
exponentially as l decreases. Finally, the sample for l = 0
contains all the rows of the original table.

The distinct values of the target unit key in a sample table
are selected on the basis of the pairwise independent hash
function h(v) and thus these selected values can be seen as a
random sample of the distinct values of the target unit key
in the original table.Thus, the data analyst can estimate the
properties about the target unit in the original table by only
analyzing a sample table derived from it. For example, the
average total sales per order in lineitem can be estimated us-
ing the average total sales per order in l sample because all
distinct orders are sampled with the same probability.

We will see that the sample tables of different target levels
can be read from disk efficiently. To discuss the efficiency, we
call a set of rows sharing the same set of levels in a clustered
table a bucket. A bucket can be viewed as an I/O unit. All
rows in a bucket share the same prefix in their clustering
keys, and thus, they are contiguously clustered. If a row in
a bucket is included in a sample table, all other rows in the
bucket are also included.

The single-unit random clustering suffers from the unit
mismatch problem because rows can be sorted in only one
random order while each row is related to multiple units.
Thus, our approach uses random bucketing rather than or-
dering. The rows related to the units of the same level are
divided into multiple buckets on disk. Given the target unit
at query time, our algorithm restores these rows by selecting
buckets related to the target level.

Sample extraction is surely efficient if the target table has
the target unit key as its only unit key. In that case, all rows
are sorted only by the levels of that key and collecting rows
above a certain level is efficiently done by making a sequen-
tial scan. However, if the table has extra unit keys other than
the target unit key, the rows having the same level of the tar-
get unit key are divided into many smaller buckets because
of the existence of the levels of the other unit keys.

Therefore, we need to estimate the effect of the number of
unit keys on the efficiency of our sample generation. For a
table having N rows, the expected size of a bucket with levels
(l0, l1, ..., lU−1) is N

∏U−1
u=0 2−1−lu = N2−U−∑U−1

u=0 lu . This is a mono-
tonic function of the level sum. Our technique clusters rows
in ascending order of the level sum, i.e., their expected size.
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Figure 2: Upper bound of the probability that a row is
in a mini-bucket
Thus, the smallest buckets are probabilistically clustered in
the blocks at the bottom of the table.

We assume that each disk block stores B rows. Buckets
having at least B rows can be efficiently read from disk be-
cause they are stored in at least one contiguous block. On
the other hand, buckets with fewer than B rows may reduce
the disk-read efficiency. A bucket is called a mini-bucket if
the expected number of its rows is smaller than B. Here, we
show that mini-buckets actually occupy a small fraction of
the whole table and do not significantly reduce efficiency if
the table has many rows and a few unit keys.

Consider a row r in a table t of N rows with U unit keys.
Denote by S the set of all rows in mini-buckets of t. The
probability that r ∈ S is bounded as follows:

Γ(U, ln(N/B))
(U − 1)!

≤ Pr(r ∈ S) <
Γ(U, ln(N/B) − U ln 2)

(U − 1)!
= Pub(U,N/B)

where Γ(a, x) is the upper incomplete gamma function. The
upper bound Pub(U,N/B) is plotted for varying U and N/B in
Figure 2. This graph shows that the probability is reason-
ably small if N/B is large and U is small. For example, the
probability is smaller than 4.8 × 10−3 for N/B = 106 and U = 4.
The probability is equal to the expected ratio of the number of
rows in the mini-buckets to N. Thus, the mini-buckets occupy
fewer than N/B · Pub(U,N/B) blocks in expectation. Thus, our
algorithm can collect buckets of the same level with a small
overhead caused by reading the blocks storing mini-buckets.

The expected size of the smallest sample table, which is
obtained at l = L, is N2−L. Thus, L should be at least O(log N),
which makes the expected size of the smallest sample con-
stant. If L is larger than O(log N), the choice of L does not
affect the efficiency, because the samples for l > O(log N) are
very small and clustered in the blocks storing mini-buckets
and do not cause many random accesses.

3. 3 Iterative Sampling
We showed that sample tables of different target levels can
be efficiently extracted from a clustered table. However, the
sample table may include data irrelevant to the analyses,
and the data analyst needs to filter out such data by the fil-
tering criteria. If the remaining data after filtering are too
small for statistical analysis, the analyst needs to get larger
samples by setting lower target levels. To reduce the burden,
we give an algorithm that automatically chooses samples sat-
isfying her requirements, i.e., the filtering criteria and size
condition, as well as the target sampling unit. This algo-
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rithm iteratively extracts samples from multiple tables by
decreasing the target level until the requirements are met.

We define how the analyst can represent her requirements
as the input to the system. First, the target sampling unit is
represented by choosing one of the unit keys for each target
table to be sampled. For example, if sampling of orders is
needed, o orderkey for table orders and l orderkey for lineitem
are chosen as the target unit keys. Next, we introduce the
notion of filtered table to describe the filtering criteria and
size condition. A filtered table is a table derived from sam-
ple tables and, if needed, other tables. The filtering criteria
is described as a selection from the sample tables to the fil-
tered table. If the analyst wants to exclude a certain kind
of unit, she defines the filtered table so that rows related to
such units are excluded. The size condition can be described
as an aggregation over the filtered table because the filtered
table only contains the units that pass the filtered criteria.

Given these requirements, we return a sample of sufficient
size by decreasing the target level until the given require-
ments are satisfied. The pseudo-code is given in Algorithm
1. We are given a query that contains T pairs of clustered
tables and their unit keys (t0, u0), (t1, u1), ..., (tT−1, uT−1), filter-
ing criteria f , size condition c, and main query q. First, we
initialize the target level l to L. For each clustered table ti,
we define a sample table si as the set of all rows in ti whose
levels of ui are at least l. Next, we ask the database system
if the size condition c is satisfied by submitting a query with
the definitions of the sample tables and the filtering criteria
(checkCondition in Algorithm 1). The database system creates
the sample tables, filters them with the given criteria, and
returns a truth value indicating whether the filtered tables
satisfy the size condition. If the condition is not satisfied, we
decrement l by one, redefine the sample tables, and submit
a size condition query again. The size condition check is re-
peated until the condition is satisfied or l reaches 0. Finally,
we submit the main query q to the database system with the
final definitions of the sample tables (runMainQuery). If the
sampling process reaches the final step l = 0, the sample ta-
bles are the same as their original tables and the main query
is exactly answered.

The distinct values of the target unit keys are randomly
sampled by the hash function. Thus, if one of the values is
included in the sample of one table, all rows related to the
same value must be included in the samples of other tables.
This assures that we can safely join the sample tables on
the sampled values of the target unit keys without lacking
related rows. This capability of joining on sampled values is
a major advantage of our algorithm.

3. 4 Sampling System
We here present a sampling system that can bring out the
strengths of our clustering technique. This system receives
sampling queries from analysts and runs the iterative sam-
pling algorithm according to it. An overview is shown in Fig-
ure 3. To simplify the explanation, we assume that we are
given a database system that already stores the data the an-
alyst wants to examine. Our sampling system works as a
proxy server between the client application the analyst op-
erates and the database system. It first clusters the data
of the tables in the database system (the clustering phase)
and then waits for sampling queries to be submitted by the
analyst (the sampling phase). In the clustering phase, the

Algorithm 1 Sampling(pairs of a target table and its
unit key (t0, u0), ..., (tT−1, uT−1), filtering criteria f , size
condition c, main query q)

for l = L to 0 do
for i = 0 to T − 1 do

define sample table si as the set of all rows in ti
whose level of ui is at least l

if checkCondition(c, f , s0, ..., sT−1) then
break

return runMainQuery(q, f , s0, ..., sT−1)
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Figure 3: Overview of our sampling architecture
analyst sends a clustering request to the sampling system
through the client application. In this request, the analyst
designates several attributes as unit keys. Then, the sam-
pling system clusters the data of the tables in the database
system by using multi-unit clustering. After the clustering
finishes, the sampling system waits for sampling queries to
be submitted by the analyst. Once it receives a query, the
sampling system runs the iterative sampling algorithm and
returns the result to the analyst. The clustering process gen-
erally takes a long time, because all rows are sorted on disk.
However, once the clustering is done, subsequent sampling
queries can be answered in shorter amounts of time.

We extend the SQL grammar so that the analyst can de-
scribe her requirements. Figure 4 shows our extended SQL
grammar. The requirements are represented by SAMPLE,
WITH and UNTIL clauses, and they are inserted before the
main query block. The SAMPLE clause is used to choose
which clustered tables to sample and the target unit key for
each of them. The names of the sample tables are specified as
AS clauses. If they are omitted, the name of the original clus-
tered table is used to refer to its sample table in the following
clauses. The WITH clause is used to define filtered tables de-
rived from the sample tables. The filtered tables can be used
later in the UNTIL clause and the main query. The WITH
clause can be omitted if no filtered tables are necessary. The
UNTIL clause specifies the size condition to be satisfied by
the sample and filtered tables. Once the condition is sat-
isfied, the main query following the sampling requirements
is executed using the sample and filtered tables. Figure 5
shows an example query based on this grammar. The query
is based on the database schema of the TPC-H benchmark.
It calculates the average total price per customer who lived
in Japan and ordered in 2015.
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〈query〉 ::= [〈sampling requirements〉] 〈main query〉
〈sampling requirements〉 ::= 〈sample clause〉 [〈with clause〉] 〈until clause〉
〈sample clause〉 ::= SAMPLE clustered table [AS sample table] BY target unit key

{”,” clustered table [AS sample table] BY target unit key}
〈until clause〉 ::= UNTIL size condition

Figure 4: SQL grammar with sampling requirements

SAMPLE orders AS o sample BY o custkey, customer AS c sample BY c custkey
WITH filtered AS (SELECT * FROM o sample, c sample, nation WHERE o custkey = c custkey AND c nationkey

= n nationkey AND n nation = ’JAPAN’ AND o orderdate BETWEEN ’2015-01-01’ AND ’2015-12-31’)
UNTIL 1000 ≤ (SELECT COUNT(DISTINCT o custkey) FROM filtered)
SELECT AVG(sum) FROM (SELECT SUM(price) FROM filtered GROUP BY o custkey)

Figure 5: Example query that calculates the average total sales in 2015 per customer who lived in Japan

4. Experimental Evaluation
In the experiments, we compared our multi-unit random

clustering with traditional single-unit random clustering.

4. 1 Setting
The database system used in the experiments was Amazon
Redshift dc2.xlarge single node. We used the TPC-H bench-
mark datasets with a scale factor of 300. To simplify the
explanation, we modified table lineitem so that it would have
a primary key attribute l linekey that stores row ids because
the original lineitem does not have a single primary key. After
that, we created three identical copies of the TPC-H database
in the same system and clustered these three databases us-
ing different clustering techniques. We set L = 31 because it
is large enough to keep the smallest sample small. All unit
keys had integer values, and we used a pairwise independent
hash function of the form h(v) = (a · v + b) mod p mod 2L.

In the first database, MU, each table was clustered using
multi-unit random clustering. We designated all primary
keys and foreign keys as unit keys for all tables. As a re-
sult, lineitem was assigned four unit keys: l linekey, l orderkey,
l partkey, and l suppkey. Next, level and level sum attributes
were appended to all tables, and the tables were clustered in
the manner explained in Section 3.1.

In the second database, MU*, each table was clustered us-
ing multi-unit random clustering in the same way as MU ex-
cept that the level sum was not included in the clustering
key. This means the buckets in the tables of MU* were not
arranged in order of expected size. Thus, unlike MU, MU*
did not have the benefit of clustering small buckets.

The third database, SU, was a database that shows the
effect of the traditional single-unit random clustering tech-
nique that considers a row as the sampling unit. SU was ba-
sically the same as MU, but we changed the level attributes
* level to hash attributes * hash that stored raw hash values
h(v) instead of Level(v). Each table was clustered using the
hash attribute of the primary key. The tables in this database
can be viewed as having been randomly clustered because
the rows were shuffled according to the hash values.

These three databases contained exactly the same data ex-
cept the newly appended attributes for clustering. In the fol-
lowing experiments, we executed identical queries over these

databases. The databases returned the same results, but had
different query performances because their tables were clus-
tered using different techniques.

4. 2 Experiment 1: Sample Table Generation
We evaluated the efficiency of extracting a sample table from
a clustered table for different target levels by directly query-
ing the database system with traditional SQL queries. We
chose lineitem as the target table from which the sample ta-
bles were generated, because lineitem is the largest table in
the TPC-H dataset and it has four unit keys, the largest
number among the tables. Queries were executed with ’cold
cache’; i.e., all selected rows were read from disk. We submit-
ted the following queries to the three databases.
A SELECT COUNT(DISTINCT unitkey) FROM lineitem

WHERE unitkey level ≥ l

B SELECT COUNT(DISTINCT unitkey) FROM lineitem
WHERE unitkey hash < 2L−l

where l is an integer in [0, L]. A is for MU and MU*, and B is
for SU. Both queries return the number of units in the sample
table, i.e., the sample size. l is a parameter to control the
sample size. Upon receiving these queries for the same l, the
three databases must return the same sample size because
the rows satisfying unitkey level ≥ l in the MU and MU* are
equal to the rows satisfying unitkey hash < 2L−l in the SU.

The results are shown in Figure 6. We varied l from L to
0 and plotted the query time versus the sample size. The
graph for l linekey exemplifies the case that the sampling
unit matches the unit of single-unit random clustering. For
this key, the three databases showed almost the same per-
formance. For the other three keys, however, SU performed
significantly worse than l linekey while MU still worked effi-
ciently, as well as l linekey. This result shows how the unit
mismatch problem degrades the efficiency of single-unit ran-
dom clustering and that multi-unit random clustering can
avoid this problem. The difference between SU and MU was
large when the sample size was moderate, but was small
in the minimum and maximum limit because the minimum
sample required a constant query processing cost and the
maximum sample required a full scan of the table.

MU performed more efficiently than MU* for l partkey and
l suppkey. This difference shows the effect of using the level
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sum as the first element of the clustering key, which arranges
the smallest buckets in contiguous blocks.

4. 3 Experiment 2: Iterative Sampling
In Experiment 2, we evaluated the efficiency of the itera-
tive sampling algorithm by submitting sampling queries to
our sampling system. We designed the sampling queries
on the basis of three TPC-H queries: Q4, Q13, and Q17.
These queries are typical examples that suffer from the unit
mismatch problem because their aggregation units are nu-
merically distinct values in foreign keys. We rewrote these
queries in extended SQL by appending sampling require-
ments. The target sampling unit and the filtering criteria
were determined according to the nature of the queries. For
all queries, we set the size condition so as to stop sampling
when l = θ, where θ is an integer scaling parameter in [0, L].
For each θ, the sampling system ran size condition queries
from l = L to l = θ, then performed the main query for l = θ.

For each θ, we compared the performance of our itera-
tive sampling in the MU database with the performance
of directly running the main query for the final sample
with l = θ in the SU database without running condition
queries. To perform sampling in SU, the main query was exe-
cuted with tables restricted by unitkey hash < 2L−l instead of
unitkey level ≥ l in the same manner as Experiment 1. The
results are shown in Figure 7. Total-MU represents the costs
to run iterative sampling on the MU database, i.e., the to-
tal costs to run the condition queries and the main queries.
Main-SU represents the costs to run the main queries for the
final sample in the SU database. Exact represents the costs
to get exact answers by running the original TPC-H queries.
Although the costs of iteratively running condition queries
were included in Total-MU, Total-MU was still significantly
more efficient than Main-SU except when the sample size was
very large. For Q17, a large number of blocks were read in
Main-SU even when the sample size was small because the
database system chose to join tables to avoid inefficient ran-
dom accesses. Nevertheless, Total-MU still worked well for
Q17 because the sampled rows were clustered well. These
results show that samples can be efficiently extracted from
the tables clustered by multi-unit random clustering.

5. Related Work
Sample generation. There are a number of tech-

niques for randomly sampling rows from disk-resident files
or databases. They can be classified as to whether the disk
access method is a sequential scan or random access. Reser-
voir sampling [12] is a typical example of sequential tech-
niques. Among random techniques, the technique proposed
by Olkan and Rotem generates samples using an indexing
structure like B+-tree [10] or hash file [11]. A drawback of
the sequential-scan-based techniques is to need to process
the whole data to get a random sample. Random techniques
can avoid having to make a whole scan, but still require, at
maximum, as many random block accesses as the sample
size. To reduce I/Os, several studies randomly collect blocks
instead of rows, e.g. [5]. However, rows in the same block
may have a strong correlation with each other and cannot be
seen as an independent random sample.

The most closely related approach to ours is distinct sam-
pling [6], which generates samples by sequential scan con-
sidering distinct values of a target attribute as the sampling

units and using them to answer queries asking for the num-
ber of distinct values. Distinct sampling can deal with differ-
ent sampling units, but needs to scan the whole data to gen-
erate samples, and it only deals with distinct value queries.

AQP based on precomputed samples. AQP systems
typically store precomputed synopses including samples, his-
tograms, and wavelets for approximate aggregation. AQUA
[2] stores join synopses [3] for foreign key joins and congres-
sional samples [1] for group-by queries. BlinkDB [4] is an
AQP system storing stratified samples.

Online Aggregation. Online aggregation [8] is an AQP
framework based on runtime sample generation. It presents
to the user a running estimate with an error bound based
on the samples retrieved so far. The first online aggregation
paper [8] considered aggregation in a single table. This ap-
proach has been extended to multi-table joins [7], large tables
[9] and nested queries [13]. The single-unit random cluster-
ing technique has been used for online aggregation in many
studies [7, 9, 13], but it cannot work efficiently if the sam-
pling unit does not match the unit of random clustering. Our
clustering technique is a solution to this problem.

6. Conclusion
We proposed a random clustering technique that enables

fast sample generation from disk-resident tables for multi-
ple sampling units. It is a solution to the unit mismatch
problem inherent to single-unit random clustering, a tradi-
tional technique used for run-time sample generation. Our
technique can be used to help data analysts by generating
a sample until it satisfies their requirements. Experimen-
tal results showed our multi-unit clustering worked equally
efficiently for different sampling units, whereas single-unit
random clustering worked well only for a single unit and per-
formed significantly worse for other units because of the unit
mismatch problem.
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Figure 6: Query times required to generate sample tables of varying sizes from the three databases with respect
to the four unit keys in lineitem.
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