
論文 DBSJ Letters Vol.2, No.2

――――――――――――――――――――――――――――――――――――
WS-SAGAS: Transaction Model for
Reliable Web-Services-Composition
Specification and Execution

Neila BEN LAKHAL♠ Takashi KOBAYASHI ♦
Haruo YOKOTA ♥

Recently, building reliable web services compositions

has triggered extensive research efforts. Considering that
web services tend to be frequently updated or even to
disappear unexpectedly, composition may fail easily
causing reliability decrease. To challenge reliability, in
this paper we propose WS-SAGAS, a transaction model
for a reliable specification of web services composition. A
composition is modeled as a hierarchy of arbitrary nested
transactions, executed in a distributed architecture, with
proper failure detection and recovery mechanisms.

1. Introduction

Nowadays business processes are typically running
within a collection of largely distributed and loosely
coupled computing environments. Generally, such
business processes need to be continually reconsidered to
fit to process changes. To cope with such environment
requirements, wide range of solutions were proposed.
Unfortunately, many of them have several limitations.
They mainly lack appropriate supports for correctness
and reliability enhancement in the presence of failure.
Addressing those issues is difficult because of the absence
of standards application.

Later on, with the emergence of XML-based
standards, followed by web services, researchers realized
that those standards are strong enough to support such
requirements. As a consequence, the trend is towards
deploying business processes by connecting elementary
web services. As an example of such trends, Open Grid
Services Architecture (OGSA) is proposed [5]. Despite
these standards help considerably to enhance
interoperability, reliability is not yet well addressed. In
fact, with web services environment volatility and
dynamism, it is most likely to happen that a component
service is updated or moreover it disappears suddenly. In
such situation, it is necessary to provide proper failures
detection and recovery mechanisms. This is fundamental
to avoid overall composition consistency review.

To achieve these requirements, augmenting web
services composition specification with the transaction
concept, as already revealed in other areas, seems to be
adequate. Nevertheless, considering that web services are
naturally distributed i.e. hosted by different web services
providers, relying on these providers to support

transactions is not feasible. Thus, it becomes obvious that
defining an accurate transaction model valid for the whole
composition is essential.

However there are many advanced transaction
models [2]. Applying directly already proposed models is
not acceptable because of web services particularity,
compared with usual software components.

Motivated with these concerns, in this paper we
propose WS-SAGAS, a new transaction model. Specifically
WS-SAGAS extends nested-sagas model [1] and enriches
it with “State” feature. State capturing allows
coordinating primarily autonomous web services in a
composition and helps to inform about web services
composition potential execution progress. Moreover, in
case of potential failure occurrence, it will allow to detect
it and indeed to recover. Besides, in WS-SAGAS, we
inherit also the “vitality degree” from other models such
as ConTract and Open Nested [2]. We expect the vitality
degree to reduce considerably failure possibilities and
indeed increase composition availability. We justify this
as follow. Since originally a transaction succeeds only if all
its components are successful, with vitality degree
introduction, only vital components success is required.

The remainder of the paper is organized as follows:
Section 2 gives an overview of WS-SAGAS transaction
model. Section 3 discusses the execution model of
WS-SAGAS in a distributed architecture, and explains it
in an illustrative example. Finally, Section 4 concludes the
paper and provides some remarks concerning future
works.

2. WS-Sagas Transaction Model
2.1 Transaction Paradigm Applicability

Considering that web services tend to be frequently
updated or even to disappear unexpectedly, composition
may fail easily, causing reliability significant decrease.
This makes web services rather different from usual
software components. Consequently, web services warrant
a particular transaction support especially shaped for
them. We discuss in what follow what kind of properties a
transaction needs to satisfy to fit to web services context.

A traditional transaction is supposed to support fully
ACID properties, which is not acceptable for web services.
Our justifications are as follow. First, “Atomicity”
property full support is not required. Instead of deducing
a whole composition failure when one of its components
fails, it is more profitable to soften “Atomicity”, in other
words, to take advantage of the transaction support that
services might formerly encompass e.g. compensation.
Moreover, it would be more efficient to choose another
service, which supports the same semantic. Actually, there
is a wide range of semantically equivalent web services
enabled to provide same functionalities in different ways.
Second, similarly “Isolation” and “Consistency” properties
should be relaxed because none of them is relevant. Since
compositions might be long running, enforcing “Isolation”
affects negatively execution progress. This is because
parallel transactions communication is required in web
services context, since cooperation among transactions is
an essential feature. Besides, ensuring “Consistency”
enforcement means first, monitoring each web service
invocation and later, identifying the service(s), component

♠Student Member Graduate School of Information Science and
Engineering, Tokyo Institute of Technology
neila@de.cs.titech.ac.jp
♦Regular Member Global Scientific Information and
Computing Center tkobaya@cs.titech.ac.jp
♥Regular Member Tokyo Institute of Technology, Global
Scientific Information and Computing Center
yokota@cs.titech.ac.jp

日本データベース学会 Letters Vol.2, No.2 1

mailto:neila@de.cs.titech.ac.jp
mailto:tkobaya@cs.titech.ac.jp
mailto:yokota@cs.titech.ac.jp

論文 DBSJ Letters Vol.2, No.2

――――――――――――――――――――――――――――――――――――

日本データベース学会 Letters Vol.2, No.2 2

5. Finally, compensating transaction provides
much more flexibility. Since it was primarily
proposed in sagas transaction model, it is
worthy to build on nested-sagas instead of the
nested-transaction model.

Process

from a composition, that might violate the whole
composition consistency. This is rather tedious and not
acceptable. Finally “Durability” property should be kept
because once a composition completes, its execution
results must be made persistent. As a result, the
traditional transaction model, with ACID properties
full-support, could not straightforwardly apply to web
services context but it needs to be extended.

2.2 Nested-Sagas Transaction Model

There are several advanced transaction models
proposed [2]. Seeing web services context requirements,
we investigated the applicability of the nested-transaction
model [3], sagas model and finally nested-sagas model [1].
In what follow a comparison between those three models:

1. Nested-sagas transactions can be recursively
defined. Thus they support an arbitrary level of
nesting contrary to the original sagas
transactions, where nesting is limited to two
levels;

2. The original nested transaction model of [3]
ensures atomicity and isolation of the whole
transaction. A sub-transaction failure is
reflected on its parent. This is not conceivable
because considerable amount of already
executed works would be lost;

3. Nested-sagas transaction model considers about
communication mechanisms, an essential
feature in web service context. Each saga
specifies input and output ports bound at run
time to mailboxes i.e., messages queue.

4. Nested-sagas with already specified input and
output ports can be more practically mapped to
web services since structures are somehow
identical;

Guided by this comparison, we propose to inherit
features of interest from the nested-sagas model.
Specifically, arbitrary nesting level, relaxed ACID
properties and transaction compensation. We also inherit
the vitality degree feature, proposed in several advanced
transaction models [2]. Moreover, in order to satisfy
properly the transaction support described in 2.1, we also
propose to enrich it with state capturing feature that we
will describe in the following subsection.

Composition

Start End

in out

WSC1

 S2

E 2
v

E1 v
S1 S4 in out

out
E4

nv in in out S3 in out out in

E 3
v in out

2.3 WS-Saga Description
A ws-composition WSC is a collection of n elements

from a composition { , ,… }. As depicted in Figure
1., a composition is specified as an orchestration of
elements. Depending on the considered nesting level, the
same element is either assimilated to an atomic
element or to a ws-composition e.g. is assimilated to
an atomic element in WSC1 specification while in WSC2
specification, it is composed of two elements E3.1
and .

E v
n E v

1 E v
2

E v
i

Ev

E nv
3.2

WSC2

 S3.2 S3.1

E3.2
nv

E3.1 vin outin in out out
 3

v

An element has a state Si and a vitality degree,
where in Ei stands for Vital element and in Ei
stands for Not Vital element.

v nv
“nv” v” Figure1. WS-SAGAS Description “

Definition I Element state Si
An atomic element is exclusively in one of the following
states:

1. Waiting: If element is not yet submitted for
execution and is waiting to;

E v
i

2. Executing: If element is executing; E v

3. Failed: If element encounters a failure;
i

Ev

4. Aborted: If element receives a request to abort
itself;

i
E v

i

5. Committed: If element has successfully
terminated and was committed and

E v
i

6. Compensated: If element has been
compensated.

E v
i

An element execution is actually the execution of a web
service providing functionalities of interest. This service
execution control is delegated to an engine ei, already
allocated to the considered element. State change, as
described in Figure 2., is performed by that engine ei. The
state concept introduction is motivated with the following
concerns:

1. Since web services are originally without state,
when they are executing as component of the
same composition, without the state concept
introduction, it will not be possible to know the
execution progress.

2. In order to decide how to go forward in a WSC
execution i.e. decide to which element(s) to
delegate the execution control or whether to
resume the execution, it is essential to know the
execution progress of elements being executed.

Definition II Element Vitality Degree
We introduce the vitality degree of an element in

order to add flexibility in the way ws-composition failure
is cascaded. We distinguish a vital element from a

E v
i

E i
v

論文 DBSJ Letters Vol.2, No.2

――――――――――――――――――――――――――――――

Waiting

Failed

Aborted

Executing

Committed

Compensated

execute(E i,ei1)
[start_signal received]

create(E i)
[CEL(E i)<>empty]

error()
[failure detected]
Ei.state=failed
update(CEP)

allocate()
[CEL<>empty]
Ei.engine=e i2
Ei.state=executing
update(CEP)

commit()
[finish_signal received]
Ei.state=committed
update(CEP)

compensate()
[compensate_request received]
Ei.state=compensated
update(CEP)

finish()

finish()

finish()
generate(CEL(E j))

allocate()
[CEL=empty]
Ei.state=failed
update(CEP)

v

v

vEi.state=executing
Ei.engine=e i1
update(CEP)

v

v

v

v
v

v

v

v

――――――

日本データベース学会 Letters Vol.2, No.2 3

WSC1

S4

E1

Reserve ticket

E2 in out v

out
out

S3

Itinerary

E3 in out v

in E4
in

out
nv

Car rental

in

S1

Reserve hotel

S2 vin out

End
Trip

reservation

Start
Process

in ou

not-vital element as follow:

1. Aborting a vital element component of a

ws-composition will induce aborting the whole
ws-composition, if there is no alternative web
service to execute the same element.

2. Aborting a not-vital element will not be
reflected on its parent, thus a ws-composition
can complete successfully even though not all
its components elements were committed.

3. Initially the vitality degree of all elements is by
default set to vital.

3. WS-SAGAS Transactions Execution in
THROWS Distributed Architecture
3.1 THROWS Distributed Architecture Overview

In this section we describe how web services
composition, specified as WS-SAGAS transactions, will be
executed in a distributed architecture that we already
proposed and named THROWS. More details about
THROWS architecture are available in [4].

THROWS stands for “a Transaction Hierarchy for
Route Organization of Web Services”. Specifically
THROWS is a distributed architecture for web services
composition reliable execution where the control is
hierarchically delegated among distributed engines
dynamically discovered, during the composition execution.
These distributed engines interact in a peer-to-peer way.

Each engine ei is responsible of the successful
execution of an element Ei that is, the execution of an
available web service WSi. WSi is offering the same
functionalities, as element Ei requires.

THROWS achieves failure capturing and recovery
from failure by the “Candidate Engines List (CEL)”
concept and the “Current Execution Progress (CEP)”
concept. CEP and CEL are to be available on each engine
side. CEL is relative to an element from a composition. It
is the list of candidate engines enabled to execute it i.e.

they control the execution of web services providing
semantics desired by that element.

Figure 3. Trip Reservation Business Process

Figure 2. Element State Transition Diagram CEL concept reinforces the composition reliability by
providing alternative execution routes for a same
WS-SAGAS transaction. Besides CEP keeps track of a
composition execution progress and allows execution
control delegation among engines. An engine, while
executing an element, every change in the element, as
described in Figure 2., has to be also reflected on CEP.

E i
nv

3.2 Illustrative Example

To ensure a better understanding of how web
services compositions are depicted as WS-SAGAS
transactions, we describe in what follow the case of a trip
reservation business process. To reserve a trip, a customer
needs to submit an itinerary that indicates desired
destination, departure and arrival time and date.
Airplane ticket and hotel reservation are crucial for the
whole process success. Car rental is considered as optional.
By using WS-SAGAS transaction model description, the
trip reservation business process will be specified as in
Figure.3. Initially, all the elements state is set to “waiting”,
with no engine allocated. The CEP of WSC1 is indicated as
follow:
・ CEP (WSC1) initial = {(E1, waiting, null), [(E2, waiting,

null); (E3, waiting, null)], (E4, waiting, null)}

v nv

v v v n

vv

The order of execution is E1<[E2; E3]<E4, i.e. when
element E1 is committed successfully, elements E2 and E3
executions are concurrently launched. To start executing
element E4, E2 and E3 successful completions are
necessary because both of them are vital. Contrary to E4,
considered as not vital i.e. if airplane ticket and hotel
reservation were successful but car rental failed, the
whole composition success can be deduced.

v v v

nv v v
nv

v

 v

v
Suppose e11 is allocated to execute E1, i.e. to execute a

web service WS11 providing the same semantic required
by E1. If engine e11 executed successfully WS11, E1 state is
updated to “committed”, e11 will check in CEP whether
there is following elements, it will generate CEL of E2 and
E3, as successors that need to be executed in parallel, and
allocate e21 and e31 to execute respectively web services
WS21 and WS31. Finally it will update CEP as follows, and
communicate it to e21 and e31.

v v

v
v

v

論文 DBSJ Letters Vol.2, No.2

――――――――――――――――――――――――――――――――――――

日本データベース学会 Letters Vol.2, No.2 4

s

・ CEP (WSC1)11→21,31={(E1, committed, e11), [(E2,

waiting, e21); (E3, waiting, e31)], (E4, waiting, null)}
Suppose that, while engine e21 was executing WS21, a

failure occurs for any unpredicted reason such as WS21
unavailability e.g. this may occur since web services are
hosted on the web services providers side. Failure
recovery is performed as follows. e21 will inform its
predecessor engine(s), here e11, that it was unable to
terminate successfully E2 execution i.e. will communicate
to engine e11 the CEP updated as follows:
・ CEP (WSC1) 21→11 = {(E1, committed, e11), [(E2, failed,

e21); (E3, executing, e31)], (E4, waiting, null)}
To avoid the whole composition failure, since element

E2 execution is crucial for its success, i.e. E2 is a vital
element; e11 checks the content of CEL (E2) that it has
already generated. Two cases are conceivable:
・ Case 1: CEL (E2)={e22, e23, e24}

Engine e11 allocates e22 to execute E2. It also updates
CEP as follows and communicates it to engines e22 and e31.
As result, the execution retrial is enabled and failure is
avoided.
・ CEP(WSC1)11→22,31= {(E1, committed, e11), [(E2,

waiting, e22); (E3, executing, e31)], (E4, waiting, null)}
・ Case 2: CEL (E2)=empty

Engine e1 while checking CEL (E2) content, it finds
out that there are no other candidate engines, enabled to
execute element E2. As result, WSC1 execution will be
resumed. Executing elements will be requested to abort
and already committed elements will be compensated for
i.e. E1 will be compensated for by engine e11, element E3
will be aborted by engine e31 and the executed part from
E2 before failure, will be compensated for.

4. Conclusion

In this paper, we proposed WS-SAGAS, a transaction
model for a reliable specification of web services
composition. In actual fact, concerned with web services
environment volatility and dynamism, an also with the
fact that web services are in essence naturally hosted by
independent web services providers, we realized that, to
enhance reliability, applying straightforwardly already
proposed transaction models is not possible. A
comparative study of several advanced transactions
models guided us to the nested-sagas transaction model,
from which we inherited several interesting features.
Specifically, arbitrary nesting level, relaxed ACID
properties and transaction compensation.

Besides, we inherited also the vitality degree notion.
It allowed us increasing the availability of composition
and indeed to reduce failures possibilities. Moreover, we
enriched it with state capturing. This allowed us to
enhance considerably composition reliability. In fact state
capturing enabled us to know a composition potential
execution progress and to detect failures.

 In addition, we also described how web services
composition, modelled as WS-SAGAS transactions, can be
executed in a distributed architecture THROWS. We have
taken a trip reservation business process as an
illustrative example. In THROWS, WS-SAGAS
transactions reliable execution is ensured using CEL and
CEP concepts. Transactions are executed in a distributed

way; each transaction element is mapped to a web service,
allocated already to a distributed engine. Such execution
model allowed us to improve noticeably the system
performance. Moreover, WS-SAGAS transaction model is
rich enough to be applied in other kind of architecture i.e.
with centralized control.

v v
v v nv

As future work, we are currently investigating
implementation issues and specifically the feasibility of
web services composition implementation using
WS-SAGAS transaction model.

v v [References] v nv

[1] H. Garcia-Molina, D. Gawlick, J. Klein, K. Kleissner,
and K. Salem, Modeling long-running activities as nested
sagas. Data Engineering Bulletin, vol.14, no.1, pp. 14-18.
March.1991.

v v
v

[2] A.k.Elmagarmid, ed., Database transaction models for
advanced applications, Morgan Kaufmann Publishers,
San Mateo, California, 1992.

v
v

[3] J.E.B. Moss, Nested transactions: an approach to
reliable distributed computing, " MIT Press, Cambridge,
Massachu etts, 1985. v v
[4] Neila BEN LAKHAL, Takashi KOBAYASHI and
Haruo YOKOTA, Distributed architecture for reliable
execution of web services, Technical Report of IEICE,
DBWS2003 2B, DE2003-24, pp.97-102, 2003-DBS-131
(17), pp.129-136, 2003.7.

nv v
v

v

v [5] OGSA home page, http://www.globus.org/ogsa/

v v Neila BEN LAKHAL
She received a BS in computer science applied to
management from High Institute of Management of Tunis
Tunisia in 2000. She is currently a Master course student
in the Graduate School of Information Science and
Engineering of Tokyo Institute of Technology. She has
been working on transaction processing and distributed
workflow systems failure recovery.

v

Takashi KOBAYASHI
He received a B.E. and M.E. in computer science from
Tokyo Institute of Technology in 1997 and 1999,
respectively. He is a research associate of Global Scientific
Information and Computing Center, Tokyo Institute of
Technology. His research interests include software
patterns, software architecture and information retrieval.
He is a member of IPSJ and JSSST.
Haruo YOKOTA
He received the B.E., M.E., and Dr.Eng. degrees from
Tokyo Institute of Technology in 1980, 1982, and 1991,
respectively. He joined Fujitsu Ltd. in 1982, and was a
researcher at ICOT for the Japanese 5th Generation
Computer Project from 1982 to 1986, and at Fujitsu
Laboratories Ltd. from 1986 to 1992. From 1992 to 1998,
he was an Associate Professor in Japan Advanced
Institute of Science and Technology (JAIST). He is
currently a Professor at Global Scientific Information and
Computing Center in Tokyo Institute of Technology. His
research interests include general research area of data
engineering, information storage systems, and
dependable computing. He is a chair of Technical Group of
Data Engineering in IEICE and a member of IPSJ, JSAI,
IEEE, IEEE-CS, ACM and ACM-SIGMOD.

	Neila BEN LAKHAL
	Takashi KOBAYASHI
	Haruo YOKOTA

