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User-Adaptive Navigation Structures
for Image Retrieval
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Galois'  lattices  have  been  shown  to  be  a
convenient  navigation  structure  for  visualization.
However,  experiments  showed  that  after  a  few
hundreds  of  images  the  number  of  children  and
parents for a given node is likely to increase and to
lead to user confusion. In order to deal with larger
sets  of  images,  we  introduce  a  linear  complexity
algorithm  to  define  a  sub-lattice  that  will  still
respect the lattice axioms and thus will remain an
acceptable  navigation  structure.  The  result  is  a
user-adaptive,  usage-adaptive  and  cheap-to-build
structure showing only  most  relevant  images  and
links, thus increasing usability.

1. Introduction
Unlike classical textual data that can easily be stored to

and  retrieved  from  classical  database  management
systems,  multimedia  data  can  not  be  normalized  [11].
These  kind  of  data  contain  a  variable  density  of
information,  moreover  information  depends  on  the
observer  and the context.  Image is  one of  most  studied
multimedia data; human annotation being subjective and
costly,  it  is  not  enough  for  retrieval  through  an  image
collection.  Thus,  content-based  image  retrieval  (CBIR)
systems  appeared  using  information  extracted  from
content. First CBIR used concepts from classical DBMS to
query  a database of  content-based information  [5],  then
similarity based querying and relevance-feedback querying
[10] appeared. Finally, navigation-based systems aimed at
producing  a  user-friendly  and  fast  system,  yet  loosing
precision over query-based retrieval [12]. Now, work is still
done in these three approaches that are complementary.

Navigation through a  before-hand calculated structure
has shown good results:  it  provides a fast  and intuitive
way  to  retrieve  information  from  an  image  collection.
However, each user has his own goal while looking for an
image, and different goals should have different structures
to optimize retrieval.
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In this paper, we propose to apply masks on navigation
structures, i.e. hide parts of the graphs or connections to
display  a  subgraph closer  to  user's  expectation.  This  is
done by keeping  an  underlying  structure common to all
users and all retrieval processes, keeping the advantages
of  a  before-hand  calculated  structure:  the  most  costly
processes are done before-hand, and retrieval itself is fast
and  reactive.  This  results  in  improving  our  existing
prototype by adding user customization without denying
the  performances  advantages.  Our  proposal  is
consequently more efficient than systems based on feed-
back querying or similarity search, and more relevant than
systems based solely on a pre-calculated structure.

First, in section 2, we present the intrinsic information
we extract from images to describe them. In section 3 we
give  a  quick  introduction  on  Galois'  Lattices,  then  in
section 4 we propose a general scheme for applying masks
on  a  particular  navigation  structure  based  on  Galois
lattice.  Finally  in  section  5  we  propose  a  masking
technique based on this scheme. 

2. Meta-data representation
There  are  several  data  to  take  care  of  in  order  to

organize  adequately  an  image  database  [1].  The
standardization effort of MPEG-7 [8], [9] separates meta-
data  into  several  levels,  from  physical  information  to
perceptual  one,  as  well  as  manual  annotations  and
transcriptions.  Our  study  focuses  on  structural
information  and  perceptual  information:  a  general
segmentation of image and dominant colors on these parts.
2.1. Color models

Color  is  known  to  be  a  tri-dimensional  parameter,
however several models exist. The HSV color model, used
in  this  work,  is  recognized  to  be  one  of  the  most
perceptually  evident for  users  [4].  HSV stands for  Hue,
Saturation and Value. In this model  pink is seen as a red
Hue with some white in it to decrease its saturation.
2.2. Zone color characterization

Color  perception  results  from  the  juxtaposition  of
individual pixels. The perceived color of an arrangement of
pixels  ranges  from uniform pure  color  to  complex  color
arrangement  without  dominating  color.  Considering  our
representation of colors, each pixel  color  is  expressed in
terms of color labels with different weights. For a pixel, the
weight is the membership degree of its color to the fuzzy
set  associated  to  a  color  label.  For  instance,  in  our
paradigm of representation, a pink pixel could be defined
as two color  labels:  vivid bright red with a membership
degree  of  0.1  and  dull  bright  red with  a  membership
degree of 0.9.

For  the  need  of  Galois'  lattices  (further  described  in
section 3), the properties have to be keywords. Thus, we
make  this  relationship  binary  by  considering  a  color
present is  its  relative  is  above  an  experimentally  fixed
threshold .
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Figure 1: Five parts segmentation
2.3. Segmentation

An image segmentation is used to allow a more accurate
description  of  image  colors.  Considering  general
photographic pictures, the main subject often stands in the
center  and  the  surrounding  areas  represent  the  image
background.

In  addition,  color  homogeneity  is  expected  to  be
enhanced if smaller zones are considered. In a landscape
picture for instance, the sky is likely to have blue or gray
hues, while the ground will probably be green. In our tests,
we used a five zone segmentation. The center zone covers
49% of the total  surface and the four surrounding zones
are  trapezoids  whose  wideness  is  15%  of  the  image
wideness.

Figure 1 shows an example image of  Kamakura's  Big
Buddha. Using a discrete description of the colors (a color
being  simply  present  or  not),  this  image  would  be
represented using the following properties: (1) light vivid
blue  top,  (2)  light  unsaturated  yellow  center,  dark
unsaturated  red  center,  (3)  light  vivid  blue  left,  dark
saturated green left, black left, (4) light vivid blue right,
dark  saturated  green  right,  black  left,  (5)  and  black
bottom.

3. Galois' Lattices
This part gives a quick introduction to Galois' lattices,

mainly to precise axioms that we will have to respect while
applying filter on it and to introduce notation that will be
used later. Interested reader may refer to [8] where Galois'
lattices applied to image retrieval are detailed.

A Galois' (or concept) lattice is a mathematical structure
that has been largely exploited in the field of knowledge
discovery [5]. It can be defined whenever there is a binary
relation, in our case between images and their associated
meta-data: R : � � ��where I is the set of images, and D is a
set of descriptions. Note carefully that a Galois' lattice can
be  defined  only  over  discrete  domains.  Also,  meta-data
descriptions vary from application to application. They can
be related to the intrinsic content of the images, e.g., color,
or  they  can  add some  semantics  to  them,  e.g.,  through
mere keywords.

A  lattice  being  a  directed  acyclic  graph  featuring  a
minimal  node (inf)  and a  maximal node (sup),  a Galois'
lattice is  a special  kind of  lattice derived from a binary

relationship.
The problem of updating a Galois' lattice is not trivial,

since it is necessary to generate not only the new pairs and
its connections but usually several other pairs needed to
respect  the  Galois'  lattice  definition.  [4]  proposes  an
incremental algorithm that has an exponential complexity
in the worst case. However, in most case we experience a
linear complexity for adding one instance.

A Galois' lattice will be noted (N, E), where N is a set of
nodes and E a set of oriented edges.

4. Masking lattices
The time complexity of the Galois'  lattice construction

algorithm being experimentally o(n2) [4], it allows to reach
a size of 10,000 instances [7]. In this case, a node explosion
can happen and the path to the wanted image may be long.
Moreover, if descriptions are randomly distributed on the
image set, the number of edges can be very important and
lead to confusion when user is to choose between too many
children nodes. In order to reduce the number of node by
hiding only non-relevant one, and by limiting processing
time, we propose to take the original Galois' lattice as a
base to apply a mask.

A mask is a filter  applied to a given Galois'  lattice to
hide elements,  that can be  nodes  or  links. It  should be
noted that while the resulting graph may not be a Galois'
lattice since it will not represent a binary relation between
two sets, it  has to be a lattice. Since user will  browse a
direct representation of the resulting graph, every lattice
axiom is mandatory to ensure that this browsing will allow
user  to  reach  every  non-masked  image  in  a  natural
navigation path.

Different  kinds  of  masking  serve  different  goals.  For
example,  one  may  want  to  reduce  the  cardinal  of  the
images set or the cardinal of the description set. However,
any kind of masking is represented in the same way.

Definition: Given a lattice  (N, E), a  lattice mask M is
defined as M = (NM, EM, EA, NMe) where NM � N, EM � E, EA

� N2 and NMe � NM
2. Also, NMe is such as � (N1, N2) � FM,

N1 is a father node of N2.
NM represents the set of nodes to be masked, EM the set

of edges to be masked, EA the set of edges to be added and
NMe the set of pair of nodes to be merged.

5. Masking techniques
In  this  section,  we present two kind of  filtering,  both

with  different  goals:  node  masking and  edge  masking.
Node masking consists in masking some set of images if
the system already have informations about what kind of
images are relevant to current retrieval and which images
are  not.  Applying  such  a  filtering  will  result  in  hiding
complete  nodes  to  user  if  most  of  its  members  are
irrelevant  to  current  search.  On  the  contrary,  edge
masking  consists  in  masking  links  if  the  relation
represents a description irrelevant for this search.

Both masking techniques results in masking both nodes
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and  edges.  However,  we  call  "node masking''  a  masking
where  we  want  to  mask  nodes  (to  mask  edge  being  a
consequence)  and  "edge  masking''  a  masking where  we
want to mask edge (to mask node being a consequence).
5.1. Node masking

The  system  operates  a  node  masking when  it  has
gathered informations about what kind of images user is
looking  for,  enough to  reduce  the  number  of  images  to
propose but not enough to give user a final result. Node
identified  as  irrelevant  to  current  retrieval  should  be
masked.

A node masking operation is defined by a node filtering
function f on nodes: f : N�� {0, 1}. The selection of nodes to
mask is done by asking user for examples of images to be
masked,  and inferring an  approaching query.  To ensure
good  performance,  a  low-complexity  algorithm is  chosen
over  better  but  high-complexity  algorithms  used  in
systems mainly based on relevance feedback.
Algorithm

Considering  a  node  filtering  function  f and  a  Galois
lattice G = (N, E), we note NF = {n � N|f(N)=0} the set of
nodes  to  mask.  The  following  gives  a  algorithm  to
determine  a  mask  M = (NM,  EM,  FM)  that  applied  to  G
results in a lattice according to section 3.
Nm <- Nf \ {min(G), max(G)};
FORALL n in Nm:
  FORALL e connecting n:
    add e to Em;
  FORALL p, parent node of Nf:
    CASE cardinal(non_masked_children(p)):
     0: FORALL c, child of Nf:
          add (p, c) to Ea;
     1: IF c, unique children of p 
                     has no other parent:
          add (p, c) to Fm; add (p, c) to Em;
     else: nothing
  FORALL c, children node of Nf:
    CASE cardinal(non_masked_parent(c)):
     0: FORALL p, parent of Nf:
          add (p, c) to Ea;
     1: IF p, unique parent of c
                     has no other child:
          add (p, c) to Fm; add (p, c)to Em;
     else: nothing

Actually,  this  algorithm  performs  the  following
operations: (1) The set of nodes to mask will be equal to
the set of  nodes defined by the filtering function, except
that  the  minimum  and  maximum  nodes  can  not  be
masked, (2) any edge connected to a masked node will be
masked,  (3)  if  a  node  other  than  min(G) ends  with  no
parent,  it  should  be  connected  to  all  parent  of  its  last
former parent, (4) if a node other than max(G) ends with
no  child,  it  should  be  connected  to  all  child  of  its  last
former child, (5) if a node ends with a unique child and
this  child  has  a  unique  parent,  these  nodes  should  be
merged, and (6) if a node ends with a unique parent and
this  parent  has  a  unique  child,  these  nodes  should  be
merged.

The complexity of this algorithm depends on the number
of nodes to mask, and the average number of parents and

children a node can have. Experimentally, we noticed that
this number does not exceed a certain maximum. Indeed,
since  the  low-level  properties  are  correlated  regarding
their  semantic  meaning,  we noticed that the number of
children  for  a  given  node  doesn't  reach  the  number  of
properties but is at worst 25% it. Thus, we conclude that
this algorithm has an empiric linear complexity according
the number of nodes to mask, i.e. o(n). This complexity is
acceptable regarding the number of nodes to consider.

If a node had more than one parent, and all of them are
masked in the process, then the result will depend on the
last  node  masked  by  the  algorithm.  Since  the  order  to
process  nodes  is  arbitrary  chosen,  this  algorithm is  not
deterministic. However, parent nodes sharing all the same
role,  we  do  not  see  that  point  as  a  issue.  There  is  a
symmetric problem when masking children.
5.2. Edge masking

While  node  masking aims  at  changing the  content  to
show to user, the goal of edge masking is to change the
link between elements to match user's needs. Several ways
can be considered to gather information about and decide
which  properties  may be  less  relevant  to  user:  analyze
user's way of navigating through the structure, explicitly
ask for properties to be ignored, etc. For example, a user
navigating through the system may be not interested in
the  color  of  the  upper  part of  the  image.  Thus,  links
between  nodes  related  to  this  information  will  be
considered  as  noise  and  masking  them  would  improve
relevance of the navigation results.

Our research about edge masking is still in progress, and
to complete node masking in a middle term.

6. Implementation and Evaluation
Our  prototype  can  be  divided  into  two  parts:  (1)  the

before-hand structure calculation, which results in a set of
XHTML pages directly readable by a standard-compliant
web  browser  and  (2)  the  customization  system,
implemented as a browser extension operating client-side
processing. The second part is still in development. Figure
2 shows a screenshot of browsing a navigation structure
using a web browser. The center part is a view of current
node, while the higher and lower part are respectively the
fathers nodes and the children nodes. By clicking in the
lower or higher part in the set of images she likes, the user
can respectively specialize or generalize her query.

After  achieving  implementation  work,  an  evaluation
protocol  is  to be applied.  Several  sets  of images  will  be
prepared, and metrics will be calculated.

The  characteristics  of  the  different  sets  of  image  will
vary:  (1)  randomly  distributed  sets  and  sets  containing
several  homogeneous  subsets  (such  as  sunset,  nature
images, urban images, different views of the same object),
and (2) small  sets (a few hundreds of images) and large
sets  (a  few  thousands  of  images).  Having  homogeneous
subsets  should  give  better  results,  but  randomly
distributed sets can appear in a real world so should not be
excluded.
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Figure 2: Graphical navigation interface
Working on these sets, we will compare the navigation

structure  obtained without  customization  (corresponding
to previous work) to a structure customized from one to
three times. Metrics will include: (1) number of images per
nodes,  (2)  average number of  children of  a node and (3)
shortest path from the inferior node to the superior node.
For all  of  these metrics,  a small  value  is  considered as
better since it reduce user's disorientation. 

We  expect  that  each  customization  iteration  greatly
improves the system, and that a lattice featuring several
thousands  of  images  difficult  to  browse  without
customization can become usable with customization.

7. Conclusion
In  this  paper  we  presented  a  technique  to  ease

navigation through a large Galois' lattice. Using a before-
hand  calculated  structure  and  applying  to  it  a  linear
complexity  algorithm,  we  ensure  to  keep  better
performances than relevance feedback or similarity query.
Experimentation is still to be done, however we expect that
this  techniques  greatly  improves  user's  experience  by
reducing  (1)  the  number  of  images  simultaneously
displayed on the screen (2) the links he has to choose to
specialize  or  generalize  the  query.  Further  work  will
include  developing  new  masking  methods  on  the  same
framework, that would not focus on which images should
be masked but which concepts, or links between images.
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