
論文論文論文論文 Journal of Journal of Journal of Journal of the the the the DBSJ Vol.7, No.1DBSJ Vol.7, No.1DBSJ Vol.7, No.1DBSJ Vol.7, No.1

――

日本日本日本日本データベースデータベースデータベースデータベース学会論文誌学会論文誌学会論文誌学会論文誌 Vol.7, No.1 Vol.7, No.1 Vol.7, No.1 Vol.7, No.1 1

CCCCubeubeubeube----Based Analysis for Based Analysis for Based Analysis for Based Analysis for Maintaining Maintaining Maintaining Maintaining XML XML XML XML
DataDataDataData PartitionPartitionPartitionPartition for Holistic Twig Joins for Holistic Twig Joins for Holistic Twig Joins for Holistic Twig Joins

Imam MACHDIImam MACHDIImam MACHDIImam MACHDI♦♦♦♦ Toshiyuki AMAGASAToshiyuki AMAGASAToshiyuki AMAGASAToshiyuki AMAGASA♠♠♠♠
Hiroyuki KITAGAWAHiroyuki KITAGAWAHiroyuki KITAGAWAHiroyuki KITAGAWA♠♠♠♠

In this paper, we propose aIn this paper, we propose aIn this paper, we propose aIn this paper, we propose an abstractionn abstractionn abstractionn abstraction for for for for
maintainingmaintainingmaintainingmaintaining XML data XML data XML data XML data partition partition partition partition, especially for holistic , especially for holistic , especially for holistic , especially for holistic
twig joins processingtwig joins processingtwig joins processingtwig joins processing in ain ain ain a cluster cluster cluster cluster systemsystemsystemsystem through a through a through a through a
multidimensional data multidimensional data multidimensional data multidimensional data modelmodelmodelmodel. . . . As As As As XML documentsXML documentsXML documentsXML documents, XML , XML , XML , XML
schemasschemasschemasschemas and queries and queries and queries and queries are numerous and intricacy in our are numerous and intricacy in our are numerous and intricacy in our are numerous and intricacy in our
system, we extract their metadata to define such a system, we extract their metadata to define such a system, we extract their metadata to define such a system, we extract their metadata to define such a
relationship among them in a multidimensional data relationship among them in a multidimensional data relationship among them in a multidimensional data relationship among them in a multidimensional data
modelmodelmodelmodel. . . . For For For For thethethethe ppppartitioning artitioning artitioning artitioning purpose, wepurpose, wepurpose, wepurpose, we propose a series propose a series propose a series propose a series
ofofofof m m m multidimensional analysis operationsultidimensional analysis operationsultidimensional analysis operationsultidimensional analysis operations outlined outlined outlined outlined in in in in
three basic stepsthree basic stepsthree basic stepsthree basic steps: document clustering, query clustering : document clustering, query clustering : document clustering, query clustering : document clustering, query clustering
andandandand partition refinement. Each partition refinement. Each partition refinement. Each partition refinement. Each stepstepstepstep yields partitions yields partitions yields partitions yields partitions
with their associated costswith their associated costswith their associated costswith their associated costs computedcomputedcomputedcomputed by a cost model by a cost model by a cost model by a cost model that that that that
takestakestakestakes a query processing a query processing a query processing a query processing cost as the basis cost as the basis cost as the basis cost as the basis.... DDDDuring uring uring uring
simulated simulated simulated simulated distribution distribution distribution distribution of partitions of partitions of partitions of partitions to to to to cluster computerscluster computerscluster computerscluster computers, , , ,
we we we we refinerefinerefinerefine some some some some partitions residpartitions residpartitions residpartitions residinginginging in in in in an an an an overloadedoverloadedoverloadedoverloaded
cluster cluster cluster cluster nodenodenodenode andandandand redistribute them redistribute them redistribute them redistribute them in order to achieve in order to achieve in order to achieve in order to achieve
considerably well balanced coconsiderably well balanced coconsiderably well balanced coconsiderably well balanced costs among allsts among allsts among allsts among all cluster cluster cluster cluster nodesnodesnodesnodes....
FinallyFinallyFinallyFinally, , , , we show we show we show we show the the the the effectiveeffectiveeffectiveeffectiveness of our proposed ness of our proposed ness of our proposed ness of our proposed
method indicated by method indicated by method indicated by method indicated by achieving achieving achieving achieving minimizedminimizedminimizedminimized cost variance cost variance cost variance cost variance
inininin thethethethe clusterclusterclustercluster systemsystemsystemsystem and and and and good performance of query good performance of query good performance of query good performance of query
executionexecutionexecutionexecution....

1.1.1.1. IntroductionIntroductionIntroductionIntroduction
As the performance of current query processing

methods [5, 10, 12], which are based on non-parallel
system, suffers from involving huge XML data and
complex queries, parallel query processing techniques
have gained more attention recently to improve the
system performance. One of the most important issues in
designing a parallel technique in shared-nothing cluster
systems is data partitioning strategy. Many models have
already been proposed for XML data partition, but they
especially work well for homogeneous XML data. In fact, a
system may contain various XML documents with
different sizes and contents and many different XML
schemas, and numerous complex queries are submitted
against those XML documents. Distributing XML
documents to a cluster system has raised a problematic
issue that leads to combinatorial optimization solution in
order to achieve good workload balance and good
performance of query processing in the system. Therefore,
the challenge of XML data partition model is to view the
conceptual model for maintaining information about XML
data partitions and distribution.

♦ Student at Graduate School of Systems and Information
Engineering, University of Tsukuba
machdi@kde.cs.tsukuba.ac.jp
♠ Faculty at Graduate School of Systems and Information
Engineering and Center for Computational Sciences,
University of Tsukuba
{amagasa, kitagawa}@cs.tsukuba.ac.jp

In this research, we study a partitioning technique
based on the multidimensional data model especially for
holistic twig joins processing [5] executed in a
shared-nothing cluster system. Our main objective is to
provide an abstraction for partitioning XML data stored
in the form of streams of nodes and for distributing
partitioned streams of nodes and queries. XML metadata
describing relationships among XML documents, XML
schemas and queries are organized in such a way to
construct multidimensional data, which is also known as
data cube. For the purpose of XML data partition analysis,
we present some OLAP-like operations performed on the
data cube such as clustering, rolling up and splitting on
dimensions. Results of an operation will partition the data
cube; consequently, it will reflect the partition of streams
of nodes. Inspired by our previous works [3, 11], we also
adopt a cost-based approach for measuring a query
processing cost. Every partition is associated with an
accumulated cost of query processing. Eventually,
distributing partitions to cluster computers will lead to
good workload balance in terms of this cost.
The rest of this paper is organized as follows. Section 2

provides an overview of related work and in Section 3 we
describe some preliminary issues related to XML data
model and its representation that underlay our work. In
Section 4, we present our proposed method. Thereafter,
the experimental results are evaluated in Section 5. We
close this paper with a conclusion and future works in
Section 6.

2.2.2.2. Related WorkRelated WorkRelated WorkRelated Work
Processing tree pattern queries in parallel systems has

attracted a lot of attention recently, and most approaches
focus mainly on structural joins processing [3], including
our previous works in [3, 11]. In addition, Mathis et al. in
[1] proposes locking-aware structural joins operators for
twig query evaluation and just outlines briefly an
overview of twig join algorithm. On the other hand, some
works have been proposed to process query patterns using
some other approaches. WIN [6] adopts query rewriting
and hash join operation with index structures for all
query expressions. Graph traversal is used in [4] for
answering queries as XML data is represented as a graph.
The use of XPath as the query processor for processing
queries is proposed for a native XML storage [8].
Many works aim to partition XML data for load

balancing purpose and to introduce data allocation
strategy in parallel systems. Partitioning XML tree into
subtrees and maintaining them to different sites are
utilized in WIN [6]. The work of Lu et al. in [4] directly
employs the notion of vertical and horizontal partitioning
in relational databases, while in our previous works [3,
11] the vertical and horizontal partitioning in relational
tables is based on schema graph decomposition. To
compute efficient XML data allocation, workload
information and cost model have been proposed in [3, 6, 9,
11]. Bremer et al. [2] present fragmentation of XML data
using an extended XPath that supports a
vertical-horizontal fragmentation approach based on
schema structures. In addition, the authors propose a
Repository Guide, which is an extension of Data Guide, for
indexing fragmented data for distribution purpose. In

論文論文論文論文 Journal of Journal of Journal of Journal of the the the the DBSJ Vol.7, No.1DBSJ Vol.7, No.1DBSJ Vol.7, No.1DBSJ Vol.7, No.1

――

日本日本日本日本データベースデータベースデータベースデータベース学会論文誌学会論文誌学会論文誌学会論文誌 Vol.7, No.1 Vol.7, No.1 Vol.7, No.1 Vol.7, No.1 2

native XML databases, Bordawekar et-al. [8] introduce
XML tree partitioning by clustering techniques where
related XML nodes can be clustered and stored in the
same disk page.

3.3.3.3. PreliminariesPreliminariesPreliminariesPreliminaries
In this section, we present a brief introduction related

to XML data, query patterns and data representation.
These concepts are basically derived from the work of
holistic twig joins in [5].

FigFigFigFig.... 1 (a) XML tree representation, (b) a query twig 1 (a) XML tree representation, (b) a query twig 1 (a) XML tree representation, (b) a query twig 1 (a) XML tree representation, (b) a query twig
patpatpatpattern and (c) roottern and (c) roottern and (c) roottern and (c) root----totototo----leaf pathsleaf pathsleaf pathsleaf paths

3.1 3.1 3.1 3.1 XML Data ModelXML Data ModelXML Data ModelXML Data Model
An XML document is a rooted, ordered, labeled tree,

where each node corresponds to an element and the edges
representing (direct) element-subelement relationships.
Node labels consist of a set of (attribute, value) pairs,
which suffices to model tags, PCDATA contents, etc. In
addition, an XML document is identified by its document
id and its file name including its full path, if necessary. In
this paper we use the term document to refer to XML
document. Figure 1 (a) shows the tree representation of a
sample XML document.

3.3.3.3.2222 Query Twig PatternsQuery Twig PatternsQuery Twig PatternsQuery Twig Patterns
A query twig pattern Q recognized by its query id and

having a frequency of occurrences is a node-labeled tree
pattern with elements and string values as node labels
and its edges represent parent-child or ancestor-
descendant relationships as shown in Figure 1 (b). It can
be decomposed into a set of root-to-leaf path patterns as
illustrated in Figure 1 (c) and each root-to-leaf path is
identified by its path id. In this paper we use the term
query to refer to a query twig pattern and the term query
path to refer to a root-to-leaf path.

3.3 3.3 3.3 3.3 RepresentationRepresentationRepresentationRepresentation in XML Database in XML Database in XML Database in XML Database
The position of a string occurrence in an XML document

is represented as a 3-tuple (DocId, LeftPos, Level) and
analogously, the position of an element occurrence is as a
3-tuple (DocId, LeftPos : RightPos, Level), where (i) DocId
is the identifier of the document; (ii) LeftPos and RightPos
can be generated by counting word numbers from the
beginning of the document DocId until the start and the
end of the element, respectively; and (iii) Level is the
nesting depth of the element or the string value in the
document. By having this enumeration fashion, structural
relationships of parent-child and ancestor-descendent can
be determined easily.

XML database represents XML data in a set of streams
of nodes. A stream of nodes contains elements of the same
name in XML documents where each node in the stream
is represented as a 3-tuple. Similarly, all string
occurrences in XML documents are stored in one stream
of nodes. Nodes in a stream are sorted by their (DocId,
LeftPos).

4.4.4.4. The Proposed MethodThe Proposed MethodThe Proposed MethodThe Proposed Method
This section describes our basic parallel processing

system, an overview of the system configuration, the cost
model and XML data partitioning over multidimensional
data analysis operations.

4.14.14.14.1 Parallel Processing SystemParallel Processing SystemParallel Processing SystemParallel Processing System
In our shared-nothing cluster system, one of the cluster

nodes is selected as the coordinator that plays roles of
accepting queries from users, delivering queries to the
appropriate computers, collecting solutions and sending
the solutions back to the users. Other cluster nodes are
responsible for processing queries as instructed by the
coordinator and delivering the solutions to the
coordinator.

4444....2222 System ConfigurationSystem ConfigurationSystem ConfigurationSystem Configuration
In this subsection, we present an overview of the system

configuration for constructing cube and streams of nodes
and distributing them into a cluster system as illustrated
in Figure 2.

XML Documents

(q1,r1)
(q2,r2)
…
(qn,rn)

(q1,r1)
(q2,r2)
…
(qn,rn)

Query Workloads

Compute
XML Metadata

Compute
XML Metadata

Cost
Function

Cost
Function Multidimensional Data

Streams of Nodes

n1
n2n3
n4

n1
n2n3
n4

Compute
Partitions

Compute
Partitions

Distribute
Partitions

Distribute
Partitions

Cluster Machines

Tag

Document Query Path

Tag

Document Query Path
XML Schemas

Multidimensional
Analysis

Operations

XML Documents

(q1,r1)
(q2,r2)
…
(qn,rn)

(q1,r1)
(q2,r2)
…
(qn,rn)

Query Workloads

Compute
XML Metadata

Compute
XML Metadata

Cost
Function

Cost
Function Multidimensional Data

Streams of Nodes

n1
n2n3
n4

n1
n2n3
n4

Streams of Nodes

n1
n2n3
n4

n1
n2n3
n4

Compute
Partitions

Compute
Partitions

Distribute
Partitions

Distribute
Partitions

Cluster Machines

Tag

Document Query Path

Tag

Document Query Path
XML Schemas

Multidimensional
Analysis

Operations

Fig.Fig.Fig.Fig. 2 2 2 2 An An An An overview of the proposed schemeoverview of the proposed schemeoverview of the proposed schemeoverview of the proposed scheme

XML metadata to be maintained in data cube is

summarized from traversing XML documents, XML
schemas and queries. Here, document identifiers
indicating XML documents build a document dimension
in the data cube. Meanwhile, distinct tags from XML
schemas and distinct queries build a tag dimension and a
query dimension, respectively. Since a query may be
decomposed into its query paths, a query dimension may
also be refined into a query-path dimension; in terms of
the query dimension, the data cube may be drilled down
into the query-path dimension. Once all dimensions are
completely determined, we need to define a relationship
among all dimensions to functionally determine a cost
measure. In this case, a tag that is associated with an
element of a query path and associated with element
occurrences in an XML document contributes a cost
partially to the query path processing for the XML
document. Every occurrence of relationships among all
dimensions is stored as an instance in the data cube. This

論文論文論文論文 Journal of Journal of Journal of Journal of the the the the DBSJ Vol.7, No.1DBSJ Vol.7, No.1DBSJ Vol.7, No.1DBSJ Vol.7, No.1

――

日本日本日本日本データベースデータベースデータベースデータベース学会論文誌学会論文誌学会論文誌学会論文誌 Vol.7, No.1 Vol.7, No.1 Vol.7, No.1 Vol.7, No.1 3

relationship is illustrated in Figure 3; we can notice that
tag e does not satisfy the relationship because it has no
association with any query path and neither with any
query. In addition, the number of node occurrences for
each element in every XML document is counted for cost
calculation, which will be explained in the next
subsection.
In the meantime, streams of nodes are generated by

traversing and enumerating positions of elements and
string values in each XML document as explained in the
preliminary section.
As the data cube is analyzed for partitioning,

multidimensional analysis operations are applied. In
relation with the streams of nodes, partitions in the data
cube describe partitions in the streams of nodes.
Eventually, partitions of the streams of nodes along with
their associated partitions of the data cube are distributed
to cluster nodes.

r1

a1

b1

c1 d1

b2

c2 d2

b3

c3 d3

b4

c4 d4

e1

doc1

Document

a

d

e

r

b

c

Tag

r

a d

b

c d

q1

q2

Query

p1 r/a

p2 r//d

p3 b/c

p4 b/d

Query Path

Dimensions

r1

a1

b1

c1 d1

b2

c2 d2

b3

c3 d3

b4

c4 d4

e1

r1

a1

b1

c1 d1

b2

c2 d2

b3

c3 d3

b4

c4 d4

e1

doc1

Document

a

d

e

r

b

c

Tag

r

a d

b

c d

q1

q2

Query

p1 r/a

p2 r//d

p3 b/c

p4 b/d

Query Path

Dimensions

Fig.Fig.Fig.Fig. 3 3 3 3 Relationships among dimensionsRelationships among dimensionsRelationships among dimensionsRelationships among dimensions

4444....3333 Cost ModelCost ModelCost ModelCost Model
In this section, we propose a cost model to estimate a

cost of processing a query in our parallel system. A cost is
measured in terms of the number of element occurrences
as the unit. We consider computation and communication
costs as parameters that primarily influence query
performance in our parallel system. As a query may be
decomposed into its query paths in the worst case, we also
consider the cost of a query path as the foundation of
computing the query processing cost.

(1)

(2)

(3)

where (4)

In this cost model, let us consider a query that accesses
a document. The processing cost of a query is the sum of
the processing costs of its query-paths as written in
expression (1). Expression (2) states the cost of an
individual query path, where fq is a probability of query
occurrence in the system and α is a coefficient for
weighting computation cost Ccomp and communication cost
Ccomm.
In the holistic twig joins [5], principally the

computation time includes I/O and CPU time. Its
computation complexity is linear in the sum of input lists
(|inputs|) and output lists (|outputs|). The |outputs| is
estimated by a fraction γ of |inputs|; fraction γ value can
be derived from statistics of past query execution. In the
first phase of the algorithm, generating query solution
extensions, which are node candidates for solutions, and
root-to-leaf path solutions, which can be obtained from

solution extensions, takes |inputs| and |outputs|,
respectively. The second phase to merge all partial
solutions has the complexity of |outputs|. Thus, the
computation cost of a query-path processing is
α(2γ+1)|inputs|. In addition to the computation cost, the
communication cost of a query path occurs when sending
solutions from a cluster node to the coordinator. In this
case, the communication complexity is linear to output
lists (γ|inputs|). Therefore, the overall cost of processing
a query path can be simply stated in expression (3).
Finally, to cope with a cost measure for instances in the

data cube, the query path cost is broken down to an
element cost that takes the number of the element
occurrences in an XML document into consideration. This
element cost is expressed in (4).

4444....4 XML Data Partitioning over Multi4 XML Data Partitioning over Multi4 XML Data Partitioning over Multi4 XML Data Partitioning over Multi----
dimensional Analysisdimensional Analysisdimensional Analysisdimensional Analysis
In analyzing the data cube for partitioning purpose, we

use several operations as follows:
(1) 2-D projection is to map a dimension on another

dimension with its associated value. For example, by
mapping a document on the tag dimension, we get the
number of occurrences for each distinct tag value in
the document.

(2) Roll-up is to increase the level of aggregation. For
example, a query-path dimension is rolled up for a
query dimension with an aggregated value of the cost
measure. The opposite operation is called drill-down.

(3) Split (slice) is to split a data cube into several
partitions by slicing specific values for one or more
dimensions. For example, splitting a data cube based
on document wise is to split it according to a given
specific value for a document dimension.

(4) Cross tab is to reorient a 2-D projection with the
aggregation of mapping values where distinct values
of a dimension is represented in rows and distinct
values of another dimension is represented in
columns. This operation is utilized for outlining
cluster data.

(5) Clustering is to group instances of a dimension
according to their similarity values. Details are
discussed in subsection 4.4.1 and 4.4.2.

We aim to partition XML data stored in streams of
nodes by means of multidimensional analysis. Here, a
partition is defined as a subcube of the data cube. It is
created as the result of slicing the data cube on one or
more dimensions for specific values. A refined partition is
a subcube of a partition. For generality, a refined partition
is also called a partition due to possibly further
refinement. In relation with query processing costs, a
partition is associated with a cost that is computed as the
sum of all contributed element costs of query paths that
are grouped in this partition. Furthermore, when some
partitions are distributed to a cluster node, their costs are
accumulated as the cost of the cluster node.
Relationships between partitions of a data cube and

streams of nodes can be described as follows. When a data
cube is partitioned by document dimension values, it
actually reflects vertical partitioning on streams of nodes.
On the other hand, when a data cube is partitioned by tag
dimension values, query dimension values or query-path

∑
∈

=
qq

i

i

qqC)(

))1(()(commcompqi CCfqC αα −+=

∑∑∑
∈∈∈

++=−++=
inputsn

q
inputsninputsn

qi nfnnfqC ||)()||)1(||)12(()(γαγαγαγα

||)()(nfqC qin γαγα ++=∑
∈

=
inputsn

ini qCqC)()(

論文論文論文論文 Journal of Journal of Journal of Journal of the the the the DBSJ Vol.7, No.1DBSJ Vol.7, No.1DBSJ Vol.7, No.1DBSJ Vol.7, No.1

――

日本日本日本日本データベースデータベースデータベースデータベース学会論文誌学会論文誌学会論文誌学会論文誌 Vol.7, No.1 Vol.7, No.1 Vol.7, No.1 Vol.7, No.1 4

dimension values, it reflects horizontal partitioning on
streams of nodes. Figure 4 illustrates the association of
partitions between a data cube and streams of nodes.

doc2
doc3

Tag

Query Path

Document

doc1
p1 p3 p5 p7 p9

a
b
c
d
e
f
g
r

a
b
c
d
e
f
g
r

p1 p3 p5 p7 p9

Tag

Query Path

Document

Vertical Partitioning

Horizontal Partitioning

stream a a1

stream b b1 b2 b3 b4 b5 b6 b7

stream c c1 c2 c3 c4 c5 c6 c7 c8

stream d d1 d2 d3 d4 d5 d6 d7 d8

stream e e1

stream f f1 f2 f3 f4 f5 f6 f7

stream g g1 g2 g3

stream r r1

doc1 doc2 doc3
Partition1 Partition2

stream r r1

stream a a1

stream c c1 c2 c3 c4 c5 c6 c7 c8

stream d d1 d2 d3 d4

stream d d1 d2 d3 d4stream e
stream e e1

stream f f1 f2 f3

Partition
1.2

Partition1
doc1 doc2

Partition
1.1

doc2
doc3

Tag

Query Path

Document

doc1
p1 p3 p5 p7 p9

a
b
c
d
e
f
g
r

a
b
c
d
e
f
g
r

p1 p3 p5 p7 p9

Tag

Query Path

Document

Vertical Partitioning

Horizontal Partitioning

stream a a1

stream b b1 b2 b3 b4 b5 b6 b7

stream c c1 c2 c3 c4 c5 c6 c7 c8

stream d d1 d2 d3 d4 d5 d6 d7 d8

stream e e1

stream f f1 f2 f3 f4 f5 f6 f7

stream g g1 g2 g3

stream r r1

doc1 doc2 doc3
Partition1 Partition2

stream r r1

stream a a1

stream c c1 c2 c3 c4 c5 c6 c7 c8

stream d d1 d2 d3 d4

stream d d1 d2 d3 d4stream e
stream e e1

stream f f1 f2 f3

Partition
1.2

Partition1
doc1 doc2

Partition
1.1

Fig.Fig.Fig.Fig. 4 4 4 4 Partitions on data cube reflect Partitions on data cube reflect Partitions on data cube reflect Partitions on data cube reflect partitionspartitionspartitionspartitions of of of of
streams of nodesstreams of nodesstreams of nodesstreams of nodes

4444....4444.1.1.1.1 Document ClusteringDocument ClusteringDocument ClusteringDocument Clustering
Since we have numerous XML documents in the system,

in the first step those XML documents need to be grouped
according to their tag similarity and the resulted groups
of XML documents are regarded as the initial partitions.
We select a hierarchical clustering technique from other
standards such as K-means clustering and density-based
clustering [7] because we assume that ideally there is no
clue about the expected number of clusters and we let
users have flexibility to analyze and decide the best
cluster results. To outline the clustering data, we perform
the following steps:
• 2-D projection on document and tag dimensions with

the number of tag occurrences as the mapping value,
• Cross tab operation on the 2-D projection data such

that distinct values of a document dimension are
outlined in row wise as the cluster objects, distinct
values of a tag dimension are outlined in column wise
as the feature vector, and the aggregated values of
tag occurrences become the values of the proximity
measure, and

• Normalization of proximity measure by taking the
ratio of the number of tag occurrences in a document
against the entire number of tag occurrences in that
document so that similar XML documents with
different sizes will be grouped in the same cluster.

In clustering computation, the proximity measure that
defines the similarity of objects in clusters takes the
Euclidean (L2) distance for computing single link,
complete link or group average distance measure. Cutting
height of dendogram and measuring cluster quality are up
to user’s choice. As a result, the data cube is sliced on the
document dimension according to document clustering
results where a cluster corresponds to one partition in the
data cube. Generally, costs of partitions are still
considerably high so that they need to be refined in the
next step.

4.4.4.4.4.4.4.4.2222 Query ClusteringQuery ClusteringQuery ClusteringQuery Clustering
In general, a resulted partition containing documents in

the document clustering step is associated with many
queries. Our objective of this step is to refine previously

resulted partitions by grouping queries that have similar
query elements. To outline the clustering data, for each
previously resulted partition we perform the following
steps:
• Roll up operation on a query-path dimension for a

query dimension in the data cube and perform 2-D
projection on query and tag dimensions by ensuring
only queries and tags belonged to this partition, and

• Cross tab operation on the resulted projection such
that distinct query dimension values are outlined in
row wise as the cluster objects and tag dimension
values are outlined in column wise as the feature
vector. In this case, the mapping value is one for
every matching value of a query as the cluster object
and a tag in the feature vector.

In clustering computation, unlike the previous
clustering, the Manhattan distance is more appropriate
for proximity measure because a query has no tendency of
weighting the feature vector values. Clustering results in
this step reflect further slicing on the query dimension of
the data cube to produce refined partitions.

4.4.4.4.4.4.4.4.3333 Partition RefinementPartition RefinementPartition RefinementPartition Refinement
The objective of partition refinement is to refine

partitions that have considerably high costs into several
refined partitions with lower costs and redistribute them
to achieve good load balance. Initially, we simulate the
distribution of partitions using Round Robin approach
combined with greedy approach to minimize the entire
cost variance among all cluster nodes. Partition
refinement is conducted on certain partitions in a cluster
node whose loads exceed a specified threshold δ value that
is defined as the average value of costs held by all cluster
nodes. Resulted refined partitions are, then, redistributed
to underloaded cluster nodes. We keep doing partition
refinement and redistribution until the objective of
distribution is achieved.
There are three cases in which partition refinement is

necessary to perform. If a partition in an overloaded
cluster node is constructed by the followings:
(1) one or more queries that are associated with many

documents, then the partition is split according to
documents, or

(2) many queries that are associated with a single
document, then the partition is split according to
queries, or

(3) a single query that is associated with a single
document, then the partition is split according to
query-paths.

5.5.5.5. Experimental EvaluationExperimental EvaluationExperimental EvaluationExperimental Evaluation
In this section we conducted a preliminary experiment

using heterogeneous XML data sets. The main objective is
to show the effectiveness of partitions costs and queries
distribution by our proposed partitioning method.

5555....1111 XML Data SetsXML Data SetsXML Data SetsXML Data Sets
As shown in Table 1 we list XML data sets that consist

of 194 XML documents with the total size of 328 MB, 17
DTDs and 11 different contents of interests. The size of
XML documents varies greatly as indicated by the
variance value in the table. We derived the XML data sets
from several sources. The first data set up to the seventh

論文論文論文論文 Journal of Journal of Journal of Journal of the the the the DBSJ Vol.7, No.1DBSJ Vol.7, No.1DBSJ Vol.7, No.1DBSJ Vol.7, No.1

――

日本日本日本日本データベースデータベースデータベースデータベース学会論文誌学会論文誌学会論文誌学会論文誌 Vol.7, No.1 Vol.7, No.1 Vol.7, No.1 Vol.7, No.1 5

data set were derived from experimental data sets used by
Niagara Query Engine [13]. The XML data set about
movies was derived from the Standford InfoLab [14].
Synthetic XML data sets generated by XMark [15] and
XOO7[16] were also used. Based on given DTDs, we
generated 64 query twig patterns randomly.
After constructing the data cube, the sizes of document

dimension, tag dimension and path dimension are 194,
485, and 177, respectively. The data cube contains 6,276
instances; it indicates the data is sparse and requires
small storage.

Table 1 Table 1 Table 1 Table 1 XML data sets and query twig pattern sets XML data sets and query twig pattern sets XML data sets and query twig pattern sets XML data sets and query twig pattern sets

NoNoNoNo XML DataXML DataXML DataXML Data
Number of Number of Number of Number of
DTDsDTDsDTDsDTDs

Number of Number of Number of Number of
QueriesQueriesQueriesQueries

Number of Number of Number of Number of
XML DocsXML DocsXML DocsXML Docs

Total Size Total Size Total Size Total Size
(bytes)(bytes)(bytes)(bytes)

1 Bibliography 1 4 16 158,096
2 Sport Club 1 3 12 162,986
3 Cars 1 6 48 1,357,856
4 Departments 1 5 19 2,722,723
5 Purchases 1 2 10 4,873,260
6 Quotes 1 2 10 4,412,418
7 Dramas 1 3 18 7,428,278
8 Sigmod 2002 3 10 43 2,934,193
9 Movies 5 21 5 28,463,633
10 Auction (XMark) 1 4 8 119,900,420
11 Comp. Assembly (XOO7) 1 4 5 171,309,031
 TotalTotalTotalTotal 17171717 64646464 194194194194 343,722,894343,722,894343,722,894343,722,894
 Average of File SizeAverage of File SizeAverage of File SizeAverage of File Size 1111,,,,771,767771,767771,767771,767
 Variance of File SizeVariance of File SizeVariance of File SizeVariance of File Size 6.20E+136.20E+136.20E+136.20E+13

5555....2222 XML Data XML Data XML Data XML Data PartitioningPartitioningPartitioningPartitioning
Before performing XML data partitioning, we conducted

a benchmark to determine the parameters used in the cost
model. The α value is 0.97 for weighting the computation
cost toward the communication cost. The average γ value
to estimate the size of solutions is 0.1.

Fig.Fig.Fig.Fig. 5 5 5 5 Agglomerative hieAgglomerative hieAgglomerative hieAgglomerative hierarchical clustering with group rarchical clustering with group rarchical clustering with group rarchical clustering with group
average proximity methodaverage proximity methodaverage proximity methodaverage proximity method

In the XML data partitioning step, we performed the

document clustering step with three different proximity
methods: single link, complete link and group average,
and with the dendogram cutting height of 0.01. To
measure the validity of clusters we measured the
Silhouette coefficient for each type of proximities. The
averages of Silhouette coefficient for single link, complete
link and group average proximities were 0.13, 0.80 and
0.81, respectively. Therefore, the group average proximity
is selected and it yielded 10 clustering results regarded as
initial partitions. Figure 5 illustrates the dendogram of
clustering results for group average proximity.
The next step, query clustering, was conducted in the

same procedure as the document clustering to refine
partitions. Instead of selecting average group proximity,

the single link proximity was selected because its
Silhouette coefficient showed better value than other
methods. Finally, it yielded 27 refined partitions, which
were initially derived from 10 partitions.

Table Table Table Table 2222 Distribution of cDistribution of cDistribution of cDistribution of costostostostssss of partitions and queriesof partitions and queriesof partitions and queriesof partitions and queries
Initial Initial Initial Initial FinalFinalFinalFinal

ClusterClusterClusterCluster
NodeNodeNodeNode IdIdIdId

Cost of Cost of Cost of Cost of
PartitionsPartitionsPartitionsPartitions

CostCostCostCost of of of of
PartitionsPartitionsPartitionsPartitions

Query DistributionQuery DistributionQuery DistributionQuery Distribution

1 5,213.76 7,936.92 Q27, Q28, Q29, Q30, Q31, Q32, Q45, Q58,
Q59, Q60, Q61, Q62, Q63

2 17,568.58 8,258.14 Q33, Q36, Q44
3 5,290.53 8,073.13 Q1, Q2, Q3, Q4, Q5, Q6, Q7, Q8, Q9, Q10,

Q11, Q12, Q13, Q14, Q34, Q35, Q36, Q64
4 10,839.99 8,531.30 Q33, Q36, Q43
5 5,832.10 7,959.90 Q15, Q16, Q17, Q20, Q21, Q22, Q23, Q24,

Q25, Q27, Q28, Q29, Q30, Q31, Q32, Q33,
Q36, Q55, Q56, Q57

6
6,687.01

7,916.58 Q11, Q12, Q14, Q33, Q36, Q37, Q38, Q39,
Q40, Q41, Q52

7 6,793.38 7,881.50
Q26, Q42, Q47, Q48, Q49, Q51, Q52, Q53,
Q54, Q64

8 6,427.97 8,095.85 Q18, Q19, Q46, Q50
TotalTotalTotalTotal 64,653.3264,653.3264,653.3264,653.32 64,653.3264,653.3264,653.3264,653.32
Threshold Threshold Threshold Threshold δδδδ 8,081.668,081.668,081.668,081.66 8,081.668,081.668,081.668,081.66

VarianceVarianceVarianceVariance 1.79E+071.79E+071.79E+071.79E+07 4.814.814.814.81E+0E+0E+0E+04444

The initial distribution of 27 partitions into 8 cluster

nodes is shown in Table 2. The result of distribution
displays unbalanced loads among cluster nodes as
indicated by a large variance value of cost distribution.
In the partition refinement step, partitions in some

cluster nodes that exceeded the specified threshold δ were
refined further to yield 35 refined partitions. For example,
a partition in cluster node id 2 containing Q33 and Q36
underwent all three cases of partition refinement so that
Q33 and Q36 were redistributed to other nodes. As the
result, the final partition distribution shows more
balanced costs as indicated by the variance value, which is
reduced by 99.7% from the initial variance value.
In addition, we measured parallel speed up

performance by implementing the basic holistic twig joins
processing and executing in parallel those 64 queries for
the XML data sets, which are also partitioned by other
different techniques: (i) we partitioned XML data based
on document-wise; (ii) we partitioned XML data based on
document clusters. We considered the size of a document
as a cost for the two methods and used the same
distribution approach, which is Round Robin approach
combined with greedy approach with the objective of
minimizing cost variance among all cluster nodes, for all
methods. As shown in Figure 6, our proposed method of
partitioning heterogeneous XML data contributes to
higher parallel speed up performance than the other two
methods, mainly because the other two methods have no
means of refining partitions when some cluster nodes are
overloaded by partitions containing large document sizes.

0

1

2

3

4

5

6

7

1 2 3 4 5 6 7 8

#Processors

Cube Document Clustering Document

S
p

ee
d

 U
p

0

1

2

3

4

5

6

7

1 2 3 4 5 6 7 8

#Processors

Cube Document Clustering Document

S
p

ee
d

 U
p

Fig.Fig.Fig.Fig. 6 6 6 6 Parallel sParallel sParallel sParallel speed up performancepeed up performancepeed up performancepeed up performance

論文論文論文論文 Journal of Journal of Journal of Journal of the the the the DBSJ Vol.7, No.1DBSJ Vol.7, No.1DBSJ Vol.7, No.1DBSJ Vol.7, No.1

――

日本日本日本日本データベースデータベースデータベースデータベース学会論文誌学会論文誌学会論文誌学会論文誌 Vol.7, No.1 Vol.7, No.1 Vol.7, No.1 Vol.7, No.1 6

6.6.6.6. Conclusions and Future WorksConclusions and Future WorksConclusions and Future WorksConclusions and Future Works
In this paper, we propose a new abstraction through a

multidimensional data model for maintaining XML data
partitions, especially for holistic twig joins processing
executed in a shared-nothing cluster system. The
proposed model provides a view of partitioning XML data
from its dimension perspectives and outlines several
multidimensional analysis operations including clustering
techniques that are utilized to define and refine partitions.
In the experiments, we show the effectiveness of this
approach in the preliminary experiment that the overall
cost variance is reduced significantly to achieve load
balance and the parallel speed up is gained well.
For the future research, we plan to study parallel

holistic twig joins processing in relation with our XML
data partitioning approach. In addition, to cope with the
growing XML documents in the system, we plan to study
an adaptation of load balance changes due to addition of
XML documents to the system.

AcknowledgmentsAcknowledgmentsAcknowledgmentsAcknowledgments
This study has been partially supported by MEXT

(#19024006), Grant-in-Aid for Young Scientists (B)
(#19700083) and CREST of JST (Japan Science and
Technology Agency).

ReferencesReferencesReferencesReferences
[1] C. Mathis, T. Harder, M. Huastein: “Locking-Aware

Structural Join Operators for XML Query Processing”,
ACM SIGMOD, 2006.

[2] J.M. Bremer, M. Gertz: “On Distributing XML
Repositories”, International Workshop on the Web
and Databases (WebDB), 2003.

[3] K. Kido, T. Amagasa, H. Kitagawa: “Processing
XPath Queries in PC-Clusters Using XML Data
Partitioning”, Proceedings of the International
Conference on Data Engineering Workshops
(ICDEW), 2006.

[4] K. Lu, Y. Zhu, W. Sun, S. Lin, J. Fan: “Parallel
Processing XML Documents”, Proceedings of the
International Database Engineering and Applications
Symposium (IDEAS), IEEE, 2002.

[5] N. Bruno, N. Koudas, D. Srivastava: “Holistic Twig
Joins: Optimal XML Pattern Matching”, ACM
SIGMOD, 2002.

[6] N. Tang, G. Wang, J. Xu Yu, et-al.: “WIN: An Efficient
Data Placement Strategy for Parallel XML
Databases”, Proceedings of the 2005 11th
International Conference on Parallel and Distributed
Systems (ICPADS), 2005.

[7] P. Tan, M. Steinbach, V. Kumar: “Introduction to
Data Mining”, Pearson Addison Wesley, 2006.

[8] R. Bordawekar, O. Shmueli: “Flexible Workload-
Aware Clustering of XML Documents”, Database and
XML Technologies, Second International XML
Database Symposium, XSym, 2004.

[9] S. Abiteboul, A. Bonifati, et-al.: “Dynamic XML
Documents with Distribution and Replication”, ACM
SIGMOD, 2003.

[10] S. Al-Khalifa, H.V. Jagadish, N. Koudas, J. M. Patel,
D. Srivastava, Y. Wu: “Structural Joins: A Primitive

for Efficient XML Query Pattern Matching”,
Proceedings of the International Conference on Data
Engineering (ICDE), 2002.

[11] T. Amagasa, K. Kido, H. Kitagawa: “Querying Data
Using PC Cluster System”, The International
Workshops on XML Data Management Tools and
Techniques (XANTEC’07), 2007.

[12] Zhang, J. Naughton, D. DeWitti, Q. Luo, G. Lohman:
“On Supporting Containment Queries in Relational
Databases Management Systems”, ACM SIGMOD,
2001.

[13] Niagara Query Engine. http://www.cs.wisc.edu/
niagara/.

[14] Stanford University InfoLab. http://infolab.stanford.
edu/pub/movies/dtd.html.

[15] XMark - An XML Benchmark Project. http://www.
xmlbenchmark.org/.

[16] The XOO7 benchmark. http://www.comp.nus.edu.sg/˜
ebh/x007.html.

Imam MACHDIImam MACHDIImam MACHDIImam MACHDI
He received B.Sc. in Computer Science from Louisiana
State University, USA in 1995 and M.Sc. in Computer
Science from the 10 November Institute of Technology,
Indonesia and the University of Newcastle, UK in 2000.
He is currently a Ph.D student at Graduate School of
Systems and Information Engineering, University of
Tsukuba.

Toshiyuki AMAGASAToshiyuki AMAGASAToshiyuki AMAGASAToshiyuki AMAGASA
He received B.E., M.E., and Ph.D degrees from
Department of Computer Science, Gunma University in
1994, 1996, and 1999, respectively. He had been an
assistant professor at Graduate School of Information
Science, Nara Institute of Science and Technology
(NAIST) from April 1999 to March 2005. Since April 2005,
he has been an assistant professor at Center for
Computational Sciences, and Department of Computer
Science, Graduate School of Systems and Information
Engineering, University of Tsukuba. His main research
areas cover data engineering and database systems
including database systems for large scale XML data, P2P
systems for XML data processing, and data management
for scientific applications.

Hiroyuki KITAGAWAHiroyuki KITAGAWAHiroyuki KITAGAWAHiroyuki KITAGAWA
He received B.Sc. degree in Physics and M.Sc. and Dr.Sc.
degrees in Computer Science, from the University of
Tokyo, in 1978, 1980, and 1987, respectively. He joined
Institute of Information Sciences and Electronics,
University of Tsukuba in 1988. He is currently a full
professor at Graduate School of Systems and Information
Engineering and at Center for Computational Sciences,
University of Tsukuba. His research interests include
integration of heterogeneous information sources, WWW
and databases, structured documents, XML and
semi-structured data, multimedia databases, and data
mining. He is a member of ACM, IEEE Computer Society,
the Database Society of Japan, IEICE, IPSJ, and JSSST.
Also, he is an IEICE Fellow and an IPSJ Fellow.

