
2009年 9月

日本データベース学会論文誌 Vol.8, No.2

Regular Paper DBSJ Journal,Vol.8,No.2

September 2009

― 7 ―

2009年 9月

日本データベース学会論文誌 Vol.8, No.2

Regular Paper DBSJ Journal,Vol.8,No.2

September 2009

― 8 ―

���� DBSJ Journal, Vol.8, No.2
September 2009

������������� Vol.8, No.2
2009 年 9 月

Fig.1 Example of d-Left Hash Table (d=2, m=8, n=5)

To add a record, feed it to each of the � hash functions

to get the � bucket positions. The incoming record is
placed in the bucket containing the smallest number of
records; in case of a tie, the record is the placed into the
left-most bucket. The asymmetry introduced by breaking
ties toward the left actually improves performance, in
that the maximum number of items placed in a bucket is
smaller (in a probabilistic sense) when one breaks ties in
this manner [5]. In Fig.1, hash functions generate two
bucket position ����� � 8 and ����� � 1. The number of
the records of the 1st bucket |��1�| � 1 is smaller than
that of the 8th bucket |��8�| � �. Therefore, � is inserted
into the 1st bucket ��1�.

In order to retrieve a record in the hash table, feed it to
each of the � hash functions to get � bucket positions.
Then, the contents of � buckets are checked. Since the
d-left hashing balances the bucket load, the table can
achieve lookup speed with better worst-case performance
in practice [7]. To delete a record from the hash table,
search the record to determine which bucket stores the
record. Then, delete the record from the bucket.

To avoid using pointers to reduce memory size, the
bucket size � is fixed. The fixed bucket size may result
overflow; however, the probability of overflow is quite low
since the d-left hashing balances the bucket load [6].
3.2 d-left Hashing for Hash Inverse Calculation

In this subsection, we describe a novel idea to reduce a
memory usage of the d-left hash table. A usually lookup
table, including a d-left hash table must store a pair of a
key � and a value � as a record. However, there exists a
relation � � ���� for hash inverse calculation � � ������.
Thus, the key � can be calculated from the value �.

In our method, a set of indexes � that can be identified
by the server is given as:

� � ���, ��|1 � � � �, �� � 1 � � � �� � ��
The stored data are modified from the pair of ��, �� to �,
where � � � and � � �0,1��. Since � � �� as mentioned,
it is log|�| � � , and stopping storing makes a large
reduction of memory usage. Since our scheme does not
store � in the table, we need to calculate � from � for
every identification process. However, we only calculate at
most �� records in the � buckets. We can explain the
above idea as follows.

We firstly reduce the candidates to a small constant

number using d-left hashing, and then check the
candidates in a constant time. More formally describing,
given � � �0,1�� , we calculate �� � � which includes
� � ������ for given � � �0,1�� using d-left hashing,
where |��| is almost a constant. Then, we check at most
�� elements of �� if each of them matches ������. If the
match exists, the server returns the value as �� ���������,
the function returns � since there are no matches.
3.3 d-left Pre-computation Scheme

The proposed d-left pre-computation scheme has three
phases, 1) pre-computing phase, 2) identification phase,
and 3) update phase. The pre-computing phase is done
only once. The identification phase and the update phase
are executed for each identification process.

Our scheme is similar to a Bloom pre-computation
scheme [8]. The Bloom pre-computation scheme uses a
Bloom filter [9]. Since the Bloom filter cannot erase a
record, an update phase of our scheme is quite different
from that of the Bloom pre-computation scheme.

In the proposed scheme, the hash table � and the last
index �� of a tag � are stored in a memory on the server.
3.3.1 Pre-computing Phase

In pre-computing phase, the server stores an initial
output set ���,� ,� , ��,�� for each tag in the d-left hash
table. When a new record is stored in the d-left hash table,
the record is inserted into the least loaded bucket. The
server stores only a pair of ��, �� and � is not stored in
the hash table. Since record insertions of the d-left hash
table may fail, we discuss this problem in the Section 4.1.

Algorithm 1 shows the procedure of pre-computing
phase. ����������, �� is an algorithm which stores ��,� in
the d-left hash table, and described in Algorithm 2.
������������, �� is a function to obtain ��,�.

Algorithm 1 Pre-computing Phase
1: ��� � � 1 �o � ��

2: �� � 0

3: ��� � � 1 �o � ��

4: ����������, ��

5: ��� ���

6: ��� ���

Algorithm 2 ����������, ��
������ � � �1,� ,��, � � �1,� ,�����

1: � � ������������, ��

2: � � ��g ���
���,�,�

�|��������|�

3: �� |��������| � � ����

4: ������ ��, �� �� ��������

5: ����

6: ������ ��������o� ���l��

7: ��� ��

2009年 9月

日本データベース学会論文誌 Vol.8, No.2

Regular Paper DBSJ Journal,Vol.8,No.2

September 2009

― 9 ―

2009年 9月

日本データベース学会論文誌 Vol.8, No.2

Regular Paper DBSJ Journal,Vol.8,No.2

September 2009

― 10 ―

2009年 9月

日本データベース学会論文誌 Vol.8, No.2

Regular Paper DBSJ Journal,Vol.8,No.2

September 2009

― 11 ―

2009年 9月

日本データベース学会論文誌 Vol.8, No.2

Regular Paper DBSJ Journal,Vol.8,No.2

September 2009

― 12 ―

