Regular Paper

DBSJ Journal, Vol.8, No.2
September 2009

An Efficient Identification and
Indexing for Secure RFID with
d-Left Hashing

Yasunobu NOHARA" Sozo INOUE*

In this paper, we propose a secure identification scheme
for RFID with efficient time and memory, and also an
efficient update of pre-computed values on the server side.
Although RFID (Radio Frequency IDentification) is
becoming popular, a privacy problem still remains, where
an adversary can trace users' behavior by linking
identification log by legitimate/adversary readers. For
this problem, a hash-chain scheme has been proposed as a
secure identification for low-cost RFID tags, and its long
identification time has been reduced by Avoine et al. using
pre-computation on the server side. However, Avoine's
scheme uses static pre-computation, and therefore
pre-computed values include ones which are already used
and no longer used. In this paper, we optimize a lookup of
pre-computed values using d-left hashing, and provide
efficient update of pre-computed values. We also show
memory and

reasonable analytical result for

pre-computation / identification / update time.

1. Introduction

RFID (Radio Frequency IDentification) is a technology
to identify humans and objects via radio frequencies. An
RFID device, often called an RFID tag, includes a small IC
chip with an ID and a radio frequency function. Every
human and object to be identified is labeled with an RFID
tag. An RFID tag transmits its ID to a reader via radio
frequency. The tag's ID can be linked with related
information, e.g. the location, time, etc., and stored in a
database. RFID systems enable to relate people or objects
in the real world with databases in the virtual world, and
therefore are acknowledged as fundamental systems for
pervasive computing.

However, RFID raises potential violation of personal
privacy. If RFID tags are attached to personal belonging

¥ Non-member Faculty of Information Science and
Electrical Engineering, Kyushu University
nohara@irvs.is.kyushu-u.ac.jp

* Member Faculty of Engineering, Kyushu Institute of
Technology sozo@mns.kyutech.ac.jp

like shoes, watches, etc., then an adversary can collect
users' personal information by reading these tags because
these tags have strong relationships with each user. The
leakage of this information leads two privacy problems.

1. Leakage of personal belonging information

2. Tracing a user's behavior by reading and linking

identification log by legitimate and/or adversary
readers

As for 2, unlinkability is a property that an adversary
cannot recognize whether outputs are from the same user.
Unlinkability is important for preventing identification
logs to be traced by adversaries. Moreover, achieving
unlinkability is highly challenging, since RFID tag's
output has to be changed every time, which involves many
system problems.

In this paper, we focus on unlinkability when the
system performs identification. Identification is main
functionality of RFID systems, and we denote
identification which offers wunlinkability as secure
1dentification. Secure identification is completely different
from authentication, since most authentication protocols
firstly communicate the entity's plain and static ID to the
other, while secure identification does not allow this to
achieve unlinkability.

The hash-chain scheme [1,2] provides unlinkability
against an adversary by using one-way hash functions.
The scheme is suitable for RFID systems because the
implementation cost of an RFID tag must be low in the
system. However, the scheme is not scalable since the
server needs O(N) hash calculations for every
identification where N is the number of RFID tags.

For this problem, Avoine et al. improved the hash-chain
scheme using time-memory trade-off [3]. In their method,
they compress the result of pre-computation, and utilize it
for identification. They achieved reduction of memory size
and identification time. However, their method has a
problem in the update of pre-computation. Since their
method performs pre-computation statically, the method
gradually includes values already used or never to be used
when identifications are repeated. To remove these
wasted values, reconstructing the pre-computation and
keeping minimal pre-computed values only for the near
future identification is needed. However, achieving this
with Avoine's method is very costly, since it has to do
pre-computation with the same cost as the initial
pre-computation. Thus, to design a secure identification
scheme with efficient update as well as efficient
pre-computation is a crucial challenge in large-scale RFID
systems.

In this paper, we propose the solution using d-left
hashing, which is a time/memory-efficient lookup
technique. We also show analytic comparison with
existing methods, and show that our method is the most
efficient for the memory and time for identification /
pre-computation / update.

2. Hash-chain Scheme and Challenges

2.1 Overview of RFID Systems

An RFID system consists of RFID tags and the server(s).
An RFID tag is attached to people, objects. The server
consists of multiple readers, which communicate with

BART—4 R—RFRWEE Vol. 8, No.2
20094 9H

Regular Paper

DBSJ Journal, Vol.8, No.2
September 2009

RFID tags, and computation abilities. Readers are often
distributed in wide area.

In the rest of the paper, for simplicity, we use the term
“server” to represent any readers as if there is only single
reader. However, we have to be aware that the data on the
server which is given from the communication with an
RFID tag might be obsolete.

2.2 Hash-Chain Scheme

The hash-chain scheme, proposed by Ohkubo et al. [1,2],
is one of the schemes that provide unlinkability against
an adversary by using one-way hash functions. In this
scheme, two different one-way hash functions H and G, a
ROM, and a non-volatile memory are embedded to each
RFID tag. Let N be the number of RFID tags in an RFID
system. And L denotes the length of each output of
one-way hash functions H and G.

At the time of shipping, each RFID tag i (1<i<N) is
stored a bit string id; into the ROM, and secret
information s;; € {0,1}* into the non-volatile memory.
We assume that if i # i, then id; # idy for 1 <i,i' <N.
Moreover, the server stores the pair (idi, Si,l) of all tags.

For unlinkability, the secret information changes on
every identification, and an output is filtered, each of
which using the different hash functions. Precisely, the
jth(1 < j < Mp,4,) output o;; and the secret information,
denoted as s;;, of RFID tag i are given as:

0;; = H(id||sq;)
Sij+1 = G(Sij)
where || means the concatenation of strings.

In an identification process, we need to execute a hash
inverse calculation since id; is calculated from the
hashed value o; ;. Here, we define two naive methods for
secure identification aiming to be compared with our
proposed method in the later sections.

One is to calculate H(id;||s;;) for every identification
process. The other is to pre-compute all the results
H(idq|s1,1), -+, Hidy||S1,m,,0,), H(id21S2,1), -+, H(idp| |SN,Mmax)'
and store them to a memory (or transparently, storage) on
the server. We call the former method a sequential search,
and the latter a LUT (Look Up Table) search. The
successful rates of identification by both the sequential
search and the LUT search are 100%.

The output o;; = H(id;||s;;) of an RFID tag i is not
fixed because s;; changes on every identification. It is
difficult to get id; from o;; due to the property of
one-way hash function H. Therefore, this scheme provides
unlinkability against an adversary, while the server has
the ability of identification.

Moreover, from the definition of one-way hash function
G, it is also difficult to obtain s; 7 (j' <j) even if id; and
s;; are tampered with. Therefore, the scheme provides
forward security, meaning that no RFID tag can be traced
to be linked from past ID information even if the secret
information in the device is known to an adversary.

2.3 Problem of Hash-chain Scheme

The existing search method of the hash-chain scheme
has to perform NM,,,, one-way hash calculations on
average (sequential search) or to prepare NMp,,, (L +
log N) [bit] memory (LUT search). Therefore, it is difficult

to apply an existing hash-chain scheme to a large-scale
system, where NM,,,, is large.

For this problem, Avoine et al. propose speeding up of
the hash-chain scheme on the server side wusing
time-memory trade-off [3]. The proposed method is to
compress the pre-computed values, and perform
identifications using the compressed values. The method
uses the rainbow table, which is a lookup table offering a
time-memory trade-off used in recovering the plaintext
password from a password hash [4]. It is effective for
minimizing memory usage and identification time, while
the successful rate of identification does not reach to 100%
due to the nature of time-memory trade-off. Their method
performs pre-computation statically, and it gradually
includes values already used or never to be used as
described below, when identifications are repeated.

Since identification process 1is executed on a
first-come-first-served basis in general, o;; (1 <j <1;)
should be excluded from the pre-computed values, where
l; is the index of the tag i's last output that the server
receives [2]. Moreover, the probability that the server
receives 0;; (; + M+ 1 <j < Mp,,) is negligible if an
adequate margin M, which is discussed in Section 4.5, is
chosen. Therefore, the minimal pre-computed values for
the next single identification are o;; (; +1 <j <[;+ M),
and other values are wasted. The identification problem
against the minimal pre-computed values is easier than
the original identification problem; however,
reconstructing the pre-computation is needed for every
identification process since the minimal pre-computed
values change dynamically.

However, Avoine's scheme has to completely reconstruct
the rainbow table with a change of the pre-computation
values due to the nature of the rainbow table. Therefore,
Avoine's original (static) scheme needs extra memory
without heavy update calculation, and Avoine's dynamic
scheme needs heavy update calculation with minimal
memory. Therefore, to design a secure identification
scheme with efficient pre-computation and its efficient
update is a crucial challenge in large-scale RFID systems.

3. d-left Pre-computation Scheme

In this section, we propose a d-left pre-computation
scheme, which realizes secure identification with efficient
updates. The proposing scheme utilizes d-left hash table
[5,6], which is an efficient hash table in memory size and
memory accesses, as a basic block. At first, we explain the
d-left hash table and describe an idea of d-left hash table
for hash inverse calculation. Then, we propose the d-left
pre-computation scheme.

3.1 Background: d-left Hash Table

A d-left hash table is one of data structures using d
independent hash functions [5]. The hash table has m
buckets, and each bucket can store n records at
maximum. Let B[i] be the i-th bucket in the hash table
and |B[i]| be the number of the records stored in B[i].
Each hash function h; (1 <i < d) maps some set element
to one of the m bucket positions with a uniform random
distribution. Fig.1 shows an example of a d-left hash table
with parameters d = 2,m = 8,n = 5.

BART—8 R—RF2WEE Vol. 8, No.2
20094 9H

Regular Paper

DBSJ Journal, Vol.8, No.2
September 2009

hlz)=1 ~<.hy(2)=8

n=5

5

1 2 4 6 7 8

Fig.1 Example of d-Left Hash Table (d=2, m=8, n=5)

To add a record, feed it to each of the d hash functions
to get the d bucket positions. The incoming record is
placed in the bucket containing the smallest number of
records; in case of a tie, the record is the placed into the
left-most bucket. The asymmetry introduced by breaking
ties toward the left actually improves performance, in
that the maximum number of items placed in a bucket is
smaller (in a probabilistic sense) when one breaks ties in
this manner [5]. In Fig.1, hash functions generate two
bucket position h;(z) =8 and h,(z) = 1. The number of
the records of the 1st bucket |B[1]| =1 is smaller than
that of the 8th bucket |B[8]| = 2. Therefore, z is inserted
into the 1st bucket B[1].

In order to retrieve a record in the hash table, feed it to
each of the d hash functions to get d bucket positions.
Then, the contents of d buckets are checked. Since the
d-left hashing balances the bucket load, the table can
achieve lookup speed with better worst-case performance
in practice [7]. To delete a record from the hash table,
search the record to determine which bucket stores the
record. Then, delete the record from the bucket.

To avoid using pointers to reduce memory size, the
bucket size n is fixed. The fixed bucket size may result
overflow; however, the probability of overflow is quite low
since the d-left hashing balances the bucket load [6].

3.2 d-left Hashing for Hash Inverse Calculation

In this subsection, we describe a novel idea to reduce a
memory usage of the d-left hash table. A usually lookup
table, including a d-left hash table must store a pair of a
key z and a value x as a record. However, there exists a
relation z = f(x) for hash inverse calculation x = f~1(z).
Thus, the key z can be calculated from the value x.

In our method, a set of indexes X that can be identified
by the server is given as:

X={G)HIN<i<N, 1 +1<j<l+M}

The stored data are modified from the pair of (z,x) to x,
where x € X and z € {0,1}. Since N « 2! as mentioned,
it is log|X| « L, and stopping storing makes a large
reduction of memory usage. Since our scheme does not
store z in the table, we need to calculate z from x for
every identification process. However, we only calculate at
most dn records in the d buckets. We can explain the
above idea as follows.

We firstly reduce the candidates to a small constant

number using d-left hashing, and then check the
candidates in a constant time. More formally describing,
given z € {0,1}}, we calculate X' € X which includes
x=f"1z) for given z €{0,1}* using d-left hashing,
where |X'| is almost a constant. Then, we check at most
dn elements of X' if each of them matches f~1(z). If the
match exists, the server returns the value as x. Otherwise,
the function returns @ since there are no matches.

3.3 d-left Pre-computation Scheme

The proposed d-left pre-computation scheme has three
phases, 1) pre-computing phase, 2) identification phase,
and 3) update phase. The pre-computing phase is done
only once. The identification phase and the update phase
are executed for each identification process.

Our scheme is similar to a Bloom pre-computation
scheme [8]. The Bloom pre-computation scheme uses a
Bloom filter [9]. Since the Bloom filter cannot erase a
record, an update phase of our scheme is quite different
from that of the Bloom pre-computation scheme.

In the proposed scheme, the hash table B and the last
index [; of atag i are stored in a memory on the server.
3.3.1 Pre-computing Phase

In pre-computing phase, the server stores an initial
output set {0;1,+,0;} for each tag in the d-left hash
table. When a new record is stored in the d-left hash table,
the record is inserted into the least loaded bucket. The
server stores only a pair of (i,j) and z is not stored in
the hash table. Since record insertions of the d-left hash
table may fail, we discuss this problem in the Section 4.1.

Algorithm 1 shows the procedure of pre-computing
phase. InsertHC(i,j) is an algorithm which stores o;; in
the d-left hash table, and described in Algorithm 2.
MakeOutput(i,j) is a function to obtain o; ;.

Algorithm 1 Pre-computing Phase

1: fori=1toNdo

2 l; <0

3 forj=1toMdo
4: InsertHC (i,)
5 end for

6

end for

Algorithm 2 InsertHC(i, j)
Input:i € {1,---,N}, j € {1,-, Myax}

z « MakeOutput(i, j)
k < arg min {|B[h,(2)]I}
if |B[h(2)]| < n then
Insert (i,]) to B[hi(2)]
else
return ‘Insertion fails’

end if

BART—4 R—RFRWEE Vol. 8, No.2
20094 9H

Regular Paper

DBSJ Journal, Vol.8, No.2
September 2009

3.3.2 Identification Phase

This phase, shown in Algorithm 3, searches x from
given z, such that x € X,z = f(x). In case of x € X,z =
f(x), x must be stored in one of the buckets B[h;(2)],
where 1 <[<d. Therefore, the server returns x’' such
that f(x') =zx' € X' if exist, where X' = U%,B[h(2)].
Otherwise, the server returns @.

Algorithm 3 Identification Phase
Input: z € {0,1}*

Output: x € X U {0}
d
1 x| | B
=1

forall (i,j) € X' do
if MakeOutput(i,j) = z then
return (i, j)
end if

end for

return @

3.3.3 Update Phase

In update phase, shown in Algorithm 4, the server
updates the tag i’s last index [; and the hash table using
(i,j) which can be obtained in the above identification
phase.

Algorithm 4 Update Phase
Input:i € {1,---,N}, j€{1,-, Mpax}

1: fork=1[+1tojdo

2 z « MakeOutput(i, k)

3 forl=1tod do

4 if (i,k) € B[h;(2)] then

5: Delete (i, k) from B[h;(2)]
6 end if

7 end for

8 InsertHC (i, k + M)

9: end for

100 L«

An output set of the tag i that is stored in the server
before and after update phase is given as follows:

Old— e
Y; —{Oi,zg’ldﬂ' ’Oi,lf’ld+M}

yinew — {Oi,j+1' e 0i,j+M}
Therefore, the relationship of the two sets is given as

new _ yold
Y; =r""u {oi.li+M+1: T 0i.j+M} - {oi,lg’ldn' T Oi.j}'

At first, the server deletes {Oi’lpld+1,"',0i’j} from the

hash table. To delete a record (i,j) that is representing
the j-th output of the tag i, the server calculates o;;
using MakeOutput(i,j). The record (i,j) must be stored
in the one of the buckets B[h;(0;;)], where 1<1<d.
Therefore, the server finds the bucket that stores the
record (i,j), and delete the record from the bucket.

Secondly, {oi_li+M+1,--~,oi,j+M} is inserted into the hash
table. InsertHC(i,j), described in the pre-computing
phase, is used to insert the record (i,j) that representing
the o;;. Finally, the server updates [; « j.

4. Analysis
In this section, we analyze our proposed scheme
quantitatively.

4.1 Memory Usage

In pre-computation phase, NM entries for tag output
0;; are stored. Although these data are modified on every
identification process, d-left hash table always stores NM
entries since the same number of additions and removals
are done.

The d-left hash table has m buckets, and each bucket
has at most n entries. Therefore, it needs mn space. In
the space, pairs of (i,j) are stored. Since the possible
pairs of (i,j) are 1<i<N,1<j<Mpu , it needs
log NM,,,, [bit]l memory for one (i,j) pair. Therefore, the
hash table needs dmn -log NM,,., [bit] memory size. It
does not require pointers, since the size of buckets is fixed.

The memory usage and the possibility of saturating the
bucket depend on the parameters d,m and n. Bonomi et
al. showed the parameters d = 4,m = NM/6,n = 8 gives
the possibility of saturating the bucket is 1.681 x 10727,
even if we perform 2%° times of addition/removal over
NM entries, which is small enough to negligible[6]. In the
rest of the paper, we adopt the above value as d,m and n.
Thus, the memory usage of our scheme becomes

%NM log NMpqy [bit].

4.2 Time of Pre-computation

In a pre-computation phase, NM entries for RFID tag
outputs o;; for any (i,j) are stored. A single output of an
RFID tag requires 2 hash calculations. Therefore, 2NM
hash calculations are done.
4.3 Identification Time

For single identification, exhaustive hash calculations
are done for the buckets X), where 1<l<d. The
expected number of the records stored in these d buckets
is dNM/m = 24, and we need (24+1)/2 calculations of
MakeOutput(i,j) on average. Since the calculation is not a
sequential such as o0;;,0;;41,-, the average cost for one
MakeOutput(i,j) calculation is M/2 4+ 1. Therefore, the
time for identification is 12.5(M/2 + 1) on average.

4.4 Update Time

In the phase of updating, the data entries are added as
the same number as deletion. For single addition/deletion
of entry, it requires two hash calculations for each single
output calculation. If we assume j of o;; is distributed
randomly from [; +1 to [; + M, M/2 entries are replaced
on average. Therefore, the average hash calculation is 2M.

BART—4 R—RF2WEE Vol. 8, No.2
20094 9H

Regular Paper

DBSJ Journal, Vol.8, No.2
September 2009

Table.1 Comparison of Required Memory and Time

Memory[bit] Average Number of Hash Calculation Successful Rate of
Y Identify Update Pre-comp Identification[%]

LUT NM,pgr (L + log N) 0 0 2NM 100

2 2
Avoine(Static) cNM,, L w 0 % 99.9

c
108(log NM)? NM? NM?

Avoine(Dynamic) cNML — = 99.9

c3L 2 2

4NM M
d-left 5108 NM e 12505+ 1) 2M 2NM 100
NM

Bloom Elog g1 (eN +)M 2M 2NM 100
Sequential 0 NM 0 0 100

4.5 Size of Margin

We discuss the relationship between a margin for
synchronization M and a synchronization problem by
limiting the search range.

A synchronization problem is an error that the server
cannot follow the transition of the secret information of
the tag, and cannot identify the tag. In the hash-chain
scheme, the tag outputs only o;; and does not output the
secret information s; ;, described in Section 2.2. Since we
need s;; for finding id; from given o, j, it is important to
estimate s;; efficiently.

If the server can observe all outputs of all tags, we can
determine s;; ., is the secret information of tag i, where
0y, 1s the tag i's last output that the server receives.
However, several reasons, e.g. 1) there are many readers,
including adversaries' that the server cannot know, 2)
there are many communication errors in an RFID system,
prevent the server from reading all outputs of all tags.
Then, we estimate the secret information as
Siy+1 " Siy+m- 1f the number of the reading failures is
less than M, the server can keep synchronization. Since
fewer M often occurs synchronization problem, we should
choose adequate M.

M should be increased in case 1) an adversary can
access the tag easily, 2) a communication error often
occurs, and 3) an application is damageable against
synchronization problem. On the other hand, high
frequency service by the server is a reason to decrease the
M, and smaller M is desirable from the viewpoint of the
server cost. Since we should consider various kinds of
conditions, quantitative determination of M is a future
challenge.

In an environment in which M should be large, that is,
there are many reading failures of the server, M,,,, also
should be large to keep the maximum number of
identification. Therefore, we assume M., > M.

4.6 Comparison with Related Work

Table 1 shows the results of the analytical evaluation.
Analysis results of Avoine's scheme [3] and Bloom
pre-computation scheme [8] is cited from each papers. We
set a parameter y of Avoine's scheme as 8 and Successful
Rate of Identification (SRI) of the Avoine's scheme

becomes 99.9%

Since our scheme stores minimal pre-computation
values for next single identification, our scheme uses
fewer memory than Avoine's static method, where M,,,, >
M. And our scheme can reduce the computation cost of
update than Avoine's dynamic method, where NM > 1
since our scheme uses the modified d-left hashing, which
can update data easily. Moreover, our scheme can save a
memory than both of Avoine's schemes since hash table
only stores values and keys are not stored in the hash
table, where 2L > N. Since modified d-left hashing is
more space-efficient than a Bloom filter, our scheme needs
fewer memory than Bloom pre-computation scheme.

Both of Avoine's schemes and the Bloom
pre-computation scheme can change memory usage by
changing the parameters ¢ or &, and these schemes can
adopt for various memory constraints; however a memory
usage of our scheme is automatically determined by N
and M, thus our scheme has a week point from this point.

5. Conclusion
In this paper, we proposed a secure identification
scheme for RFID with efficient time and memory, and also
an efficient update of pre-computed values on the server
side.
Our d-left pre-computation scheme is based on the
following ideas.
® Storing the minimal pre-computation values in a
memory for next single identification to improve
memory efficiency
® Introducing a modified d-left hash table for efficient
update of pre-computed values and using the table
for reducing the candidates of identification
While our scheme achieves fast identification, the
scheme also achieves same unlinkability and forward
security as Ohkubo's original works. We also showed
reasonable analytical evaluation for memory and
pre-computation / identification / update time.

[Acknowledgement]

This work has been supported by Grant-in-Aid for
Scientific Research (A) (21680009) and Grant-in-Aid for
Scientific Research on Priority Areas (21013038). We are

BART—8 R—RF2WEE Vol. 8, No.2
20094 9H

Regular Paper

DBSJ Journal, Vol.8, No.2
September 2009

grateful for this support.

[Referencel

[1] M. Ohkubo, K. Suzuki and S. Kinoshita:
“Cryptographic approach to a privacy friendly tag”,
RFID Privacy Workshop@MIT (2003).

[2] M. Ohkubo, K. Suzuki and S. Kinoshita: “Hash-chain
based forward-secure privacy protection scheme for
low-cost RFID”, 2004 Symposium on Cryptography
and Information Security - SCIS2004, Vol. 1, pp.
719-724 (2004).

[3] G. Avoine and P. Oechslin: “A scalable and provably
secure hash-based RFID protocol”, 2nd International
Workshop on Pervasive Computing and
Communications Security PerSec2005, IEEE
Computer Society Press, pp. 110-114 (2005).

[4] P. Oechslin: “Making a faster cryptanalytic
time-memory trade-off’, Advances in Cryptology -
CRYPTO 2003, Vol. 2729 of LNCS, pp. 617-630 (2003).

[5] A. Broder and M. Mitzenmacher: “Using multiple
hash functions to improve IP lookups”, Proceedings of
20th Annual Joint Conference of the IEEE Computer
and Communications Societies - INFOCOM 2001, Vol.
3, pp. 1454-1463 vol.3 (2001).

[6] F. Bonomi, M. Mitzenmacher, R. Panigrahy, S. Singh
and G. Varghese: “An improved construction for
counting Bloom filters”, 14th Annual European
Symposium on Algorithms - ESA 2006, Vol. 4168 of
LNCS, pp. 684-695 (2006).

[71 H. Song, S. Dharmapurikar, J. Turner and J.
Lockwood: “Fast hash table lookup using extended
Bloom filter: an aid to network processing”,
SIGCOMM '05: Proceedings of the 2005 conference on
Applications, technologies, architectures, and
protocols for computer communications, ACM Press,
pp. 181-192 (2005).

[8] Y. Nohara, S. Inoue and H. Yasuura: “A secure
high-speed identification scheme for RFID using
Bloom filters”, Proc. of 3rd International Conference
on Availability, Security and Reliability - ARES2008,
IEEE Computer Society, pp. 717-722 (2008).

[9] B. H. Bloom: “Space/time trade-offs in hash coding
with allowable errors”, Communications of the ACM,
18, 7, pp. 422-426 (1970).

Yasunobu NOHARA

Yasunobu Nohara is a post-doctoral fellow at the
Faculty of Information Science and Electrical Engineering,
Kyushu University. He received his B.E., M.E., and Ph.D.
degrees in Computer Science from Kyushu University.
His current research focuses on the privacy and security
of RFID systems and human/object tracking for a robot’s
activity. He is a member of IPSJ, IEICE, and IEEE.
Sozo INOUE

Sozo Inoue is an associate professor in the Faculty of
the Basic Science, Kyushu Institute of Technology. His

research interests include ubiquitous computing systems

and applications, particularly security and privacy in
RFID systems, and medical applications. Inoue was born
in 1974 and received his Doctor of Engineering from
Kyushu University. He is a member of IPSdJ, the Database
Society of Japan (DBSJ), ACM, and the IEEE Computer
Society.

BART—4 R—RFLWEE Vol. 8, No.2
20094 9H

